- 'x-'554-63-152

PROJECT 5509‘5 .w

MERCURY

EXTERNAL SYSTEM
PROGRAMS ‘

A

~ MARCH 15, 1964

‘GODDARD SPACE FLIGHT CENTER ——
| GREENBELT MARYLAND | -

((((((

((((((((((

- g Y e

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

FOR OFFICIAL USE ONLY

This document describes in detail the Goddard Mer-
cury Real Time Programming system in effect as of
August 1, 1963, and reflects the Computing program
used to support the MA-9 Mercury Mission. It re-
places manuals MC-107, External System Programs;
MC-108, Computer Simulation Programs; and MC-
110, Postflight Reporter Program.

Prepared by IBM for:

Data Operations Branch

Manned Space Flight Support Division
Tracking & Data Systems Directorate
NASA-GODDARD

Released by: S; '%C : 7

y.wonegan, Heéé

ata Operations Branch

PREFACE

This manual, EXTERNAL SYSTEM PROGRAMS, MC-63-4, is
the fourth of four volumes which describe the Project Mercury
Real-Time Programming System. MC-63-4 supersedes the EX-
TERNAL SYSTEM PROGRAMS manual, MC-107; the SIMULATION
PROGRAMS manual, MC-108; and the POSTFLIGHT REPORTER
PROGRAM manual, MC-110, all of which were published in
August 1961 and subsequently revised in July 1962. All program
descriptions presented in MC-63-4 reflect the Mercury computa-
tional system in use during the MA-9 mission of May 15, 1963.

Programs considered to be external to the Mercury opera-
tional system are those which are neither monitor programs nor
processing programs. External programs complement the Mer-
cury operational programming system and may be entered before,
during, or after the mission to perform such functions as: com-
piling the Mercury program, simulating the real-time environ-
ment, writing the operational system tape, dumping selected
portions of core, or analyzing post-mission data.

Text is arranged in five sections: SOS System for Mercury,
Simulation Programs, Utility Programs, System Supporting Pro-
grams, and Postflight Analysis Programs. An index to all pro-
grams in the four manuals is included to allow cross-referencing.

= mpe 55085

MC 63-4

project
mercury

EXTERNAL SYSTEM
PROGRAMS

prepared for
National Aeronautics and Space Administration
Contract No. NAS 5-3486

revised
15 march 1964

Federal Systems Division

International Business Machines Corporation

LIST OF EFFECTIVE PAGES |

® The asterisk indicates pages changed, added, or deleted by the current change.

Section

NNNN[\DNNNN)NNNN

© o NN W N R

Ho
W N = O

.14

.15

TABLE OF CONTENTS

SOS SYSTEM FOR PROJECT MERCURY

Introduction to SOS
SOS Modified for Mercury
SOS Library Tape

SIMULATION PROGRAMS

OBSERVER Program (OBSER)
HB Subroutine

HC Subroutine

RAE Subroutine
RFBRAE Subroutine
RNRCRD Subroutine
RVCAL Subroutine
SELECTOR Program
SHRED Program
SORT Program
MERGE Program

Simulated Input/Output Control Program (SIC)
Conversion of the Real-Time Mercury System for

Operation with SIC

Open Loop Simulation Program (OLS1)

Control Center

Closed Loop Simulation Program (CLS3)

Control Center

iii

—Mercury

—Mercury

MC 63-4

Page

1-1
1-59
1-81

2-1

2-2

2-17
2-21
2-21
2-21
2-21
2-27
2-31
2-41
2-53
2-65
2-69

2-81

2-83

2-89

MC 63-4

Section

3.

Section

© 00 ~q O U o W N

3
3
3
3
3
3
3
3
3.
3
3
3
3
3
3
3
3

[l
= W N =

.16

.17

o

O Y v T R S N
0 =1 O U b W N O

TABLE OF CONTENTS (Continued)

Closed Loop Simulation Program (BCLS2)—Bermuda
to Goddard

Read Low-Speed SIC Tape (RLSST)

UTILITY PROGRAMS

Program to Print Selected DCC Subchannel Input-Output
Data from a Mercury Log Tape (MXCHER)

Program to Print Mercury Log Tape in Octal (MXPOCL)
Program to Print Real Time Core'd Output (MXILCO)
Symbolic Tape Updating Program (COLBER)

Core Mapping Program (CORMAP)

Priority Indicator Listing Program (MXNDKT)
CHECKSUM Correction Program (SQZSUM)

Tape Key Comparison Program (KEYS)

Low Core Reference Program (LOWCOR)

SQUOZE Deck Comparison Program (COMPAR)
Symbolic Core Dump Program (MXCORE)

SQUOZE Tape Modification Limits Program (SUMARY)
Paper Tape Input Preparation (PAPTAP)

Low-Speed Output Printer Program (MXTHLG)

Log Tape High-Speed Input Program (HSINT)

Log Tape High-Speed Output Program (MXHSPR)

Log Tape Printer Program (MXPRLG)

Log Tape Plotting Program (MXHSPL)

SUPPORTING PROGRAMS

Monitor Merge Program (MXMRGE)

Mercury System Tape Writer Program (MXSTW1)
Mercury System Tape Loader (MXLOAD)

Extended Definition of Symbols Processor (MXDEFN)

iv

Page

2-97
2-101

3-3
3-11
3-21
3-29
3-95
3-97
3-99
3-101
3-103
3-105
3-107
3-111
3-123
3-129
3-141
3-1417
3-157
3-163

4-1

4-3

4-17
4-29
4-47

4.5

4.6
4.7

4.8

4.9
4.10
4.11

4.12
4.13

4.14

Section 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

TABLE OF CONTENTS (Continued)

System Communication During Dual Compilation
(SETORG)

Real Time Transfer Trapping Test Program (MTTEST)

Program to Write the Isolated Writer Portion of the
B4 Tape (WRTBA4T)

Program to Write Dumping Portion of B4 Tape
(HOMER)

Isolated Dumping Portion of B4 Tape (ISODMP)
Dump Program Reader (SGENDX)

Program to Initiate Taking Snap Dumps of the
Mercury System (CORING)

Message Tape Writer Program (MXWMOT)

Station Characteristics Tape Writer Program
(UOSTCH)

Station Characteristics Tape Updating Program
(UOSTUP)

POSTFLIGHT ANALYSIS AND REPORTS

Postflight Monitor Program

BCD Output Initialization Program (CHUMLY)
Constant Factors Initialization Program (ACTORS)
System Parameter Initialization Program (INITIA)
Log Tape Sort Program (SORTER)

Subchannel 1 Processing Program (GEB)

IP 7094 High-Speed Input Processor Program (IPORR)
Manual Insertion Processor Program (MANIN)
High-Speed Output Tape Writer Program (HSOP1)
BCD Word Conversion Program (A) (BCTB/BCTB1)
BCD Word Conversion Program (B) (BCTB1/BCTBJ)
Time Word Conversion Program (A) (TISWS)

Time Word Conversion Program (B) (HMSTS)

Unit Conversion Program (GCNVE)

MC 63-4

Page

4-55
4-59

4-175

4-77
4-79
4-85

4-89
4-93

4-105

4-113

-3

5-17
5-17
5-17
5-21
5=-217
5-33
5-39
5-43
5-563
5-55
5-57
5-59
5-61

MC 63-4

TABLE CF CONTENTS (Continued)

Page

5.15 Discrete Event Processor Program (GETME) 5-67
5.16 High-Speed Output Processor Program (DONOUT) 5-71
5.17 High-Speed Input Processor Program (DONIN) 5-81
5.18 Launch Phase Processor Program (LAUNCH) 5-85
5.19 Orbit Phase Processor Program (ORBIT) 5-93
5.20 Reentry Phase Processor Program (RENTER) 5-101
5.21 Numerical Integration Program (NUMIN) 5-107
5.22 IP 7094 Reference Frame Conversion Program

(IPCNV) 5-111
5.23 B-GE Reference Frame Conversion Program

(GECNV) 5-113
5.24 True Inertial Coordinate Conversion Program

(MERCNYV) 5-115
5.25 Atmospheric Density Processor Program (ATMOS) 5-119
5.26 Stagnation Heat Rate Processor Program (HEAT) 5-123
5.27 Range from Launch Pad Processor Program (RFLP) 5-125
5.28 Langrangian Interpolation (GRUNGY) 5-127
5.29 Recovery Area Conversion Routine (RCACNYV) 5-129
5.30 Distance Computation of Earth and Space Track

(DISTAN) 5-131
5.31 Utility Programs 5-137
5.32 Program Operating Procedures 5-143

Appendix A PROGRAM INDEX A-1

Appendix B POSTFLIGHT REPORTER SYMBOLIC DESIGNATIONS B-1
Appendix C COORDINATE CONVERSION SYSTEMS c-1

Appendix D REPORT DATA FORMATS D-1

vi

Figure

1-1
1-2
1-3
1-4

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14

2-15

2-16
2-17

3-1
3-2
3-3
3-4
3-5

ILLUSTRATIONS

UA1LSC Subroutine Flow Chart
UT7INTP Subroutine Flow Chart
C9RVTH Subroutine Flow Chart
LBRWR Program Flow Chart

Observer Program Flow Chart
HB Flow Chart

HC Flow Chart

RAE Flow Chart

RFBRAE Flow Chart
RNRCRD Flow Chart

Selector Program Flow Chart

Schematic Diagram (Shred Tables)

SORT Program Flow Chart
MERGE Program Flow Chart

Simulated Input/Output Control Program (SIC)

OLS1 Program Flow Chart
CLS3 Program Flow Chart

IP 7094 Data, Mercury Control Center-to-Goddard

Message Format

B-GE Data, Mercury Control Center-to-Goddard

Message Format
BCLS2 Program Flow Chart

High Speed Bermuda Input Format From DCC

MXCHER Program Flow Chart
MXPOCL Program Flow Chart
MXILCO Program Flow Chart
COLSER Program Flow Chart
LOWCOR Program Flow Chart

vii

MC 63-4

Page

1-107
1-113
1-124
1-131

2-10
2-19
2-22
2-23
2-24
2-26
2-35
2-50
2-60
2-67
2-75
2-85
2-91

2-93

2-95
2-99
2-102

3-5
3-14
3-22
3-43
3-104

MC 63-4

Figure

3-6

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15

4-10
4-11
4-12
4-13
4-14

5-2
5-3
5-4

ILLUSTRATIONS (Continued)

MXCORE Program Flow Chart

SUMARY Program Flow Chart

PAPTAP. A Program Flow Chart

PAPTAP. B Program Flow Chart

MXTHLG Program Flow Chart

HSIN7 Program Flow Chart

Examples of Logging Message Formats for HSIN7
MXHSPR Program Flow Chart

MXPRLG Program Flow Chart

MXHSPL Program Flow Chart

MXMRGE General Flow Diagram
MXMRGE Program Flow Chart
MXSTW1 Program Flow Chart
MXLOAD Program Flow Chart
MXDEFN Program Flow Chart
SETORG Flow Chart

MTTEST Program Flow Chart
ISODMP Program Flow Chart
SGENDX Program Flow Chart
CORING Program Flow Chart
MXWMOT Program Flow Chart
UOSTCH Program Flow Chart
UOSTUT General Flow Diagram
UOSTUP Program Flow Chart

Postflight Reporter Program General Flow Chart
Postflight Monitor Program Flow Chart
CHUMLY Program Flow Chart

SORTER Program Flow Chart

viii

Page

3-109
3-121
3-126
3-127
3-131
3-143
3-144
3-155
3-160
3-165

4-10
4-11
4-19
4-33
4-51
4-57
4-65
4-82
4-87
4-90
4-96
4-111
4-118
4-119

5-10
5-12
5-20
5-23

5-10
o5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
9-21
5-22
9-23
9-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31

ILLUSTRATIONS (Continued)

GEB Program Flow Chart
IPORR Program Flow Chart
MANIN Program Flow Chart
HOSP1 Program Flow Chart
BCTB/BCTB1 Program Flow Chart
BCTBI/BCTBJ Program Flow Chart
TISWS Program Flow Chart
HMSTS Program Flow Chart
GCNVE Program Flow Chart
GETME Flow Chart

DONOUT Program Flow Chart
DONIN Program Flow Chart
LAUNCH Program Flow Chart
ORBIT Program Flow Chart
RENTER Program Flow Chart
NUMIN Program Flow Chart
IPCNV Program Flow Chart
GECNV Program Flow Chart
MERCNYV Program Flow Chart
ATMOS Program Flow Chart
HEAT Program Flow Chart
RFLP Program Flow Chart
GRUNGY Program Flow Chart
RCACNYV Program Flow Chart
DISTAN Program Flow Chart
UTILITY Programs Flow Chart
DATA Deck Setup

MC 63-4

Page

5-29
5-34
5-40
5-45
5-54
5~56
5-58
5-60
5-62
5-69
5-74
5-83
5-88
5-99
5-105
5-109
5-112
5-114
5-117
5-121
5-124
5-126
5-128
5-130
5-134
5-139
5-151

MC 63-4

Table

1-1
1-2
1-3
1-4

2-1

2-2
2-3
2-4
2-5

3-1

4-1
4-2
4-3
4-4
4-5

TABLES

Individual Files, Mercury SOS System Tape
IBWR1 Program Stops

IBWR2 Program Stops

Mercury SOS Library Tape Programs

Tape Format Logical Record Shred Output, High Speed
Radar for Goddard

Tape Format Logical Record Shred Output, IP7094

Tape Format Logical Record Shred Output, GE-Burroughs
Tape Format Logical Record Shred Output, Low Speed TTY
Index of Routines and Subroutines Used in SIC

Telemetry Format, IP7094 and B-GE
Goddard Teletype Input

On-Line Messages

Station Characteristics Block Contents
UOSTCH Station Identification

Format, Station Characteristics Changes

Card Sequence, Station Characteristics Changes

Page

1-73
1-75
1-78
1-82

2-56
2-57
2-58
2-59
2-74

3-145
3-158

4-97

4-107
4-108
4-114
4-115

Section 1

SOS SYSTEM FOR PROJECT MERCURY

The Share Operating System (SOS) was chosen as the standard programming
system for Project Mercury because of its adaptability to the varying conditions
imposed on a real-time system. This section introduces SOS and contains a
discussion of the differences between the SOS and Share systems and of the
modifications made to SOS to meet the special characteristics of the Mercury
Programming System. Also included are descriptions of the programs used to
write and edit the SOS System tape (IBWR1 and IBWR2, respectively) together
with program descriptions of the Mercury SOS Library tape and of utility com-
putational subroutines.

1.1 INTRODUCTION TO SOS

1.1.1 SOS COMPILER

The Compiler in the Share Operating System has three functions: to trans-
late, compile, and assemble. It processes the source program, written in
symbolic language, and produces a tightly encoded binary deck.

Input to Compiler can be symbolic records, library routines or previously
compiled programs combined with subsequent symbolic programs. The output
is a squoze deck of the compiled source program. The name '"squoze,' adopted
for the output deck, is meant to convey compactness. A squoze deck contains
the source program coded in a compact form which retains the original sym-
bolic information. It is this symbolic output that is loaded, modified, trans-
lated into actual machine language, and executed by the Modify and Load section
of the SOS System.

1.1.1.1 Share Symbolic Language (SCAT)

The mnemonic term SCAT is a contraction of Share Compiler, Assembler
and Translator and is widely used as the name for the symbolic language in the
SOS system. SCAT is the logical extension of the Share symbolic language.
The extensions which have evolved were dictated by the following general
requirements:

a) The capability to recognize all machine instructions for the standard
IBM 7094, for 65K core, and for all SCAT pseudo-instructions.

1-1

MC 63-4

b) A requirement that IBM 704 programs be compatible with SCAT. The
Compiler (CP) recognizes, with some modification, the 704 symbolic
language (SAP). When a SAP pseudo-instruction is different from its
SCAT equivalent, the Compiler converts it to a legitimate SCAT instruc-
tion. However, SCAT/SAP compatibility does not extend beyond the
compiling phase. Modify and Load accepts only legitimate SCAT codes,
treating all others as illegal.

c) The incorporation of variable-length mnemonics, which facilitates con-
sistent channel designation and provides a convenient means of specify-
ing macro-instructions to be processed by the Compiler.

d) For ease of key punching, the variable field should begin in the same
column of every card, regardless of the length of the mnemonic.

1.1.1.2 Symbolic Input Format

The format of the symbolic instruction, with fields fixed at their maximum
limits, is:

Card Columns Description
1-6 Location field or blank
7 Blank
8 -14 Operation code (including asterisk

for indirect addressing)
15 Blank

16 - 72 Variable field and comments, which
must be separated by a blank

73 - 80 Not Used

Therefore, the mnemonic operation code (beginning in card column 8) may be
from one to six letters in length. At least one blank must follow the last letter;
the number of blanks that may follow must be such that the length of the opera-
tion code plus the number of blanks is less than or equal to eight. If the varia-
ble field does not begin by column 16, it is assumed to be blank.

Four principal parts of a symbolic instruction are recognized: location
symbol, operation code, variable field, and comment field. The location sym-
bol is a name for either a storage location or other expression associated with
the instruction; the precise item named is dependent upon the operation speci-
fied. In all cases, the operation determines the nature of the instruction and

1-2

MC 63-4

guides the interpretation of the various parts. The variable field is construed
in many ways as a function of the operation part of the instruction. In general,
with the location symbol and operation, the variable field gives the complete
instruction specifications. The comment field has the sole function of describ-
ing a remark intended to appear on a listing and is not pertinent to the running
of the program.

The order for the variable field of a 709/7090/7094 symbolic instruction is
address, tag, decrement. These subfields within the variable field are separated
by commas. In all instructions it is possible to omit parts of the variable field.
To omit only an interior part (the tag, for example) it is necessary to have two
commas in adjacent positions, because the first blank encountered in a variable
field terminates that field. TXI A, 0, B and TXI A, , B result in the same word.
Comments may begin after a blank indicating the end of the variable field; how-
ever, for ease in key punching and to maintain uniformity, comments should
begin in column 35. Comments may not begin before column 17.

1.1.1.3 Symbolic Language and Arithmetic Expressions

The basic units of the symbolic language are symbols, numbers, and opera-
tion codes. These units may be combined by punctuation marks, subject to cer-
tain rules, to yield expressions.

A symbol is a combination of from one to six Hollerith characters, at least
one of which is nonnumeric and none area +, -, *, ?, $, =, comma, or an
imbedded blank. A blank is not considered a character in this case. A symbol
is defined only if it appears in the location field of some instruction; otherwise,
it is undefined. A symbolic instruction should have a location symbol only when
it is necessary to refer to that instruction in the program. An absolute location
symbol, i.e., one containing only numeric characters, is flagged as an error
and is ignored. Leading zeroes are considered legitimate characters of a
symbol.

A number is a combination of digits which may be decimal or octal, depend-
ing upon the operation code of the instruction in which it appears. An operation
code may consist of from three to six alphabetic characters. An expression is
a combination of symbols and integers separated by the following connectors or
punctuation marks:

+ addition * multiplication
- subtraction / division

These connectors have different meanings when used in the BOOL pseudo-
operation (which is defined later).

MC 63-4

1.1.1.4 Evaluation of Variable Field Expressions

Constants in a variable field must be less than 23%, They are considered
decimal quantities unless the instruction is a Type D instruction. Examples of
Type D instructions are: RIL 1, RIR 44, SIL 1 and LFT 2. The constants of a
Type D instruction are treated as octal values. Only simple expressions are
permissible in the variable field of these instructions, and the value is computed
modulo 218, With all other instruction types, if the symbol referred to in a
simple expression is octal (Boolean), the address and decrement fields are
treated as 18-bit values and the tag is computed modulo 8. When not octal, the
address and decrement fields are considered as 15-bit values and the tag is
computed modulo 8.

1.1.1.5 Special Characters

The asterisk (*) character has five different meanings in SCAT depending
upon context. As a punch in column 1 of the card, the asterisk defines the card
as a remark or comment card. If it is found immediately after an operation
code, it specifies indirect addressing. As a connector in a variable field ex-
pression, it connotes multiplication. As a Boolean operator, it specifies inter-
section, e.g., the logical AND process. Finally, if it occurs immediately
after another connector or as the first character in a variable field, it must be
recognized as a term. In this context an asterisk is interpreted as having the
current value of the location counter.

The dollar sign character ($) may be preceded by a numerical, alphabetic,
or special character, or it may start a term followed by five or fewer charac-
ters in an expression. These collocations cause SCAT to head the symbol with
the given character rather than the current heading character. Reference from
a headed region to an unheaded symbol is made by preceding the $ with no head-
ing character. Previously, such referencing was also possible by preceding a
$ with zero.

1.1.1.6 Classification of Operation Codes

There are two classifications of instructions: machine and nonmachine.
The latter type are collectively called pseudo-instructions. For purposes of
this discussion, the pseudo-instructions are arbitrarily divided into three
categories, one of which retains the generic name pseudo-instruction. The
Compiler, therefore, recognizes four classes of instructions:

a) Machine instructions
b) Pseudo-instructions
¢) Macro-instructions

d) List control pseudo-instructions

1-4

MC 63-4

1.1.1.7 Machine Instructions

A machine instruction (i.e., an instruction using a machine operation)
always generates one 36-bit binary machine word in the object program. The
rules for specifying the location field and the variable field of a machine instruc-
tion have been stated previously. The vocabulary of 709/7094 instructions and
their SCAT mnemonics appears in subsection 1.1.1.11. (For information con-
cerning the operation of these instructions, refer to the 709/7094 Reference
Manual.)

1.1.1.8 Pseudo-Instructions
Unlike machine instructions, some pseudo-instructions may generate more
than one machine word in the object program; others generate no words at all.

The pseudo-operations of SOS have a variety of functions.

The remainder of this section describes the pseudo-operations of the Com-
piler section of SOS (except for those which direct the Modify and Load program).

The mnemonics L and VF in the following paragraphs refer to location
counter and variable field, respectively.

Assignment of Absolute Storage Locations—Origin (ORG)

The basic function of an assembly process is to assign absolute storage
locations to machine instructions. However, there must be an address at which
this assignment begins. In SCAT this value is furnished to the assembly pro-
gram by the program being assembled via the ORG pseudo-instruction. ORG
sets the location counter to the same integer value as that computed for its
variable field. A location symbol associated with an ORG instruction is also
assigned the computed value of the variable field:

Address,
Tag,
Location Operation Decrement
ORG 100

In the example above, ORG assigns a value of 1004 to the location counter.
The location counter determines the storage location to which the subsequent
instructions are assigned. The first instruction followin the ORG card is as-
signed the location of the variable field value, modulo 21 , of the ORG card.

A symbol appearing in the variable field expression need not have been
defined previously, i.e., it need not have appeared in the location field (columns

1-5

MC 63-4

1-6) of some previous instruction or pseudo-instruction. However, a symbol in
the expression which is not eventually defined in the program renders the varia-
ble field of ORG noncomputable.

If the program being assembled does not have an ORG pseudo-instruction,
Modify and Load sets the ORG to the lowest location in memory not required by
the SCAT system (30007). Subroutines assembled without ORG can be inserted
into a job where needed as long as they are prefaced by a SQZ control card.

Floating Origins—SYSFLO Table and QORGN Macro

When programs share common storage with either a permanent replacement
(as in real-time loading) or a temporary replacement (as in real-time buffering)
more efficient allocation of core storage may be accomplished if the numeric
equivalents of symbolic locations in job 1 can be made available to the SOS
system during the writing of the job 2, Bl (actually B3) tape. Local modifica-
tions have been made to the SOS system tapes used for Project Mercury which
enable information to be transferred from one job to a successive job via a
table within the IBMonitor section of SOS. Since this table must be maintained
and used in IBMonitor during the Compile or Modify and Load run from job 1
through the last job, any reinitialization of IBMonitor between Mercury dual-
compilation jobs would destroy this table.

a) SYSFLO Table—a 14-cell table in IBMonitor, beginning with and re-
ferred to by the symbolic location SYSFLO, provides storage for twenty-
eight 15-bit values. Each word may contain two values—one in the
decrement, the other in the address, etc., from SYSFLO through
SYSFLO + 13.

When SOS is compiling or modifying a job for a Load and Go run, the
first TCD (transfer card) pseudo-operation, followed immediately by
a BSS or BES pseudo-operation, causes SOS to equate the symbol
associated with the BSS or BES to the value contained in the address
field of the location SYSFLO. Successive combinations of TCD and
BSS or BES pseudo-ops force SOS to extract successive values from
the table. As each value is used, the field containing that value is
cleared. The priority of SYSFLO is given by:

Decrement Address
SYSFLO 2 1
+ 1 4 3
+ 2 6 5
+ 13 28 27

1-6

b)

MC 63-4

Since the first zero field signals the effective end of the SYSFLO values,
the entries must be packed from the top and a field of zero may not be
transferred between jobs via SYSFLO. In addition, between any two
jobs, the values in SYSFLO must be set in correspondence to the SOS
processing order of the TCD-BSS (or BES) combinations in the succes-
sive job which is to produce the SYSFLO reference.

After the final value is used, SOS flags the first location in the table to
indicate that the table has been exhausted. All successive TCD and
BSS combinations are now handled by SOS to origin the symbol at the
value contained in SOS's SYSORG. SYSORG contains in the address
the value of the first available location after the SOS reserved area of
core,

When the value from job 1 has been associated with a suitable symbol
in job 2, this value may be used for any purpose. An example of
SYSFLO usage may be illustrated by the QORGN macro. The SYSFLO
value is used by QORGN in determining an origin which floats, such
that a program in job 2 may be origined after the longer of two pro-
grams sharing the same core area with one of the programs being in
job 1.

QORGN Macro—QORGN determines the longer of two (and may be
expanded to determine the longer of three or more) programs and pro-
vides a symbolic location which may be used to origin a third program
after the longer of the previous two programs. QORGN is used to
provide automatic origins for the Mercury Programming System's
real-time loading and buffering.

The QORGN macro is defined:

QORGN MACRO A, B, BP1, AF, BF, ORGSYM
BP1 EQU B+1
AF EQU B/A + 32767
BF EQU A/BP1 + 32767

ORG AF/32767*A + BF/32767*B
ORGSYM PZE 0

TCD ORGSYM
A BSS 0

HTR 0

END

Where symbol B is the last symbol associated with a particular pro-
gram, or package, i.e., LCSYMB, in job 2, and symbol A are the

symbols to which SOS gives a value from the SYSFLO table in IBMonitor.
ORGSYM is set equal to the larger of A and B and is therefore usable

1-7

MC 63-4

as a symbolic originpoint. ORGSYM receives avalue equal to the larger of
A or B. BPl, AF, and BF are symbols internal to the macro. These
symbols must be uniquely defined in the compilation.

QORGN is executed only by SOS and may be used only by an SOS system
especially modified for this purpose. QORGN is not executed by the
operational tracking program. The files generated by QORGN are used
only to provide interjob communication to SOS and have no function in
the absolute Mercury program tapes.

Block Started by Symbol (BSS)

A BSS can occur anywhere in a program. This pseudo-instruction reserves
a block of storage when the program being assembled demands it. The block
reserved is equal in length to the value of the variable field expression and
extends from L to L +(VF-1). The associated location symbol is given the value
that L has when it encounters the BSS and corresponds, therefore, to the first
word of the block reserved.

Address,
Location Tag,
Counter Location Operation Decrement
250 A BSS 200
450 B XXX XXX

In the example above, the BSS instruction reserves the 200 memory posi-
tions from locations 250 to 449, inclusive. The location symbol A is assigned
to the value 250.

The rules for previous definition of symbols are the same as for the ORG
pseudo-instruction.

Block Ended by Symbol (BES)

A BES may occur anywhere in a program. This pseudo-instruction reserves
a block of storage at the direction of the program being assembled. A BES is
the same as a BSS in every respect except for its result on the associated loca-
tion symbol. This symbol is given the value L + VF and corresponds to the first
word following the block reserved. Whereas the associated location symbol in a
BSS has the value of L, it is assigned the value of L + VF in a BES instruction.

The rules for previous definition of symbols are the same as for the ORG
pseudo-instruction.

1-8

MC 63-4

The variable field of a BSS or BES may specify, as a tag, a code indicating
the format of the data to be stored ultimately in the reserved block of storage.
This specification is not required, but enables debugging programs to make a
meaningful listing of such data. The codes are:

F—Floating-point numbers
X—Fixed-point numbers

O—Octal data

H—Hollerith (binary coded decimal data)
S—Symbolic instruction

C—1/0 command

V—Variable Field Definition (VFD)

For example, a programmer writes:

Location Operation Variable Field
ALPHA BSS 50, F

By using F, he is saying to the debugging system: '"The 50 cells in the block
beginning at ALPHA are to be interpreted as containing floating-point numbers
when I ask you later to give me the contents of any of these cells."

Transfer Card (TCD)

This pseudo-instruction directs the loading program to transfer control to
the program being loaded. The transfer is made to the storage location repre-
sented by the value of the variable field expression of the TCD instruction.

There can be more than one TCD instruction which may appear anywhere
in the program.

If a TCD has an associated location symbol, the symbol is assigned the
value that L has when it encounters the TCD instruction.

Address,
Location Tag,
Counter Location Operation Decrement
200 A TCD 2500

1-9

MC 63-4

The instruction above sets A equal to 200; transfer of control is made to
location 2500.

End (END)

Since the computer must know where to start assigning absolute storage
locations to machine instructions, it must also know when to stop this process.
In SCAT, the termination of the assembly and loading operations is indicated
by the END pseudo-instruction. It must appear as the last instruction read
during the assembly process of every program.

As is the case with a TCD, the END instruction causes a transfer of control
to be made to the storage location represented by the value of the variable field
expression. The rules governing the associated location symbol are the same
as TCD.

Address,
Location Tag,
Counter Location Operation Decrement
800 A END 1000

The instruction above sets A equal to 800; transfer of control is made to
location 1000.

Equal (EQU)

EQU assigns the integer value given by the expression appearing in the
variable field to the symbol appearing in columns 1-6.

This pseudo-operation is used when the symbol appearing in columns 1-6
specifies a preset program parameter such as the number of items in a group
or any other quantity which is invariant with respect to the location of the pro-
gram in storage. If the symbol in columns 1-6 specifies the location of a piece
of data or an instruction, the pseudo-instruction SYN should be used.

Synonym (SYN)

SYN assigns the integer value given by the expression appearing in the
variable field to the symbol appearing in columns 1-6.

The pseudo-operation SYN is used when the symbol appearing in columns

1-6 specifies the location of a piece of data or other quantities whose values
depend upon the location of the program in storage.

1-10

MC 63-4

In SCAT language, EQU and SYN may be used interchangeably since the
distinction is taken care of automatically by Modify and Load. However, EQU
and SYN have different effects if the binary object program is to be produced in
a relocatable binary form. For the sake of clarity and use in later compilations,
the distinction between EQU and SYN should be made.

Boolean (BOOL)

The BOOL pseudo-instruction is similar to EQU and SYN in that it defines
a location symbol by equating it to the value of the single expression appearing
in the variable field. All numbers in the variable field must be octal. The
appearance of an 8 or 9 in the variable field indicates an error, and the com-
puted value of the field is erroneous.

Computing the value of a Boolean variable field differs from computing the
value of an ordinary expression because the Boolean punctuation marks specify

hi%ical rather than arithmetic operations, and the result is expressed modulo
215,

The punctuation marks, or operators, which may be used in this pseudo-
instruction are:

OPERATOR MEANING
Algebra of Classes 709/7094
+ Union Inclusive OR
- Symmetric difference Exclusive OR
* Intersection AND
/ Complementation Complementation
For example: SYMBL BOOL 505*617 results in an octal 105.

As with the EQU and SYN pseudo-instructions, the BOOL instruction must
have a location symbol associated with it. The variable field of this instruction
must be a single expression. Any division of the field into address, tag, or
decrement causes the tag or decrement parts to be ignored and results in an
error indication.

If the programmer is using the sense indicator register in his source pro-
gram, he may often need to write Type D instructions, the 18-bit address part
of which corresponds to the 18 leftmost or rightmost bits of this special
register (see pp. 51 and 60 of the 709 Reference Manual, A22 - 6501 - 1). If

1-11

MC 63-4

the particular sense indicator positions cannot be conveniently predetermined,
the instruction can be reserved by using:

Location Operation Variable Field

RIR SENSX

Later, when the programmer has decided that SENSX should be, for ex-
ample, the rightmost four positions (i.e., positions 32, 33, 34 and 35 of the
sense indicator register), he can write:

Location Operation Variable Field

SENSX BOOL 17
The 17 is interpreted as an octal number equivalent to (000 000 000 000 001 111)5.

Heading (HEAD)

The HEAD pseudo-instruction renames symbols of fewer than six charac-
ters by inserting an additional character at the beginning of each symbol.

The variable field of a HEAD instruction must consist of only one character
or a blank. Any other configuration results in an error indication and is ignored
by the loading and assembly process.

The HEAD pseudo-~instruction prefixes the heading character, or blank, to
every location symbol and every variable field symbol of five or fewer charac-
ters encountered subsequent to itself and prior to the occurrence of another
such instruction.

Location symbols and variable field symbols of six characters are not af-
fected by the HEAD pseudo-instruction. This is significant since it is through
the use of 6-character symbols and the punctuation mark, $, that reference
from one headed field to another is possible.

A dollar sign appearing in a variable field is significant for the following
reasons:

a) An expression consisting of a single character followed by a § and a
symbol of fewer than six characters is equivalent to the symbol headed
by the initial character. For example, X$A is equivalent to A headed by
X. Such an expression is not affected by the HEAD pseudo-instruction.

1-12

MC 63-4

b) An expression consisting of a $§ followed by a symbol of fewer than six
characters is equivalent to the symbol headed by a blank. Such an ex-
pression is not affected by the HEAD pseudo-instruction.

The following code illustrates the considerations mentioned above:

Absolute Symbolic

Location Location

0 A
1 B
2 A
3 B
4
5 A
6
7
8
9

10

11 COMMON

Additional information:

Code

CLA B

CLA A$A
HEAD A

CLA B

CLA $A

CLA B$A
HEAD B

CLA A$B

CLA $X

HEAD

CLA A

CLA BS$A

CLA COMMON
HEAD C

CLA COMMON
BSS, 1, F

Absolute

Address

1
2

3
0
5

11
11

a) If no heading character is given, Compiler heads with a blank. Heading
can be discontinued by using HEAD with a blank variable field.

b) Zero is a distinct heading character and indicates a heading.

c¢) Reference to a headed symbol of five characters cannot be made by
compounding a 6-character symbol of the symbol and the heading
character. Thus, a reference in a variable field of ABCDE headed
by X must be of the form X$ABCDE and not XABCDE.

Decimal (DEC)

This pseudo-instruction provides decimal data to the program being assem-
bled. A single DEC instruction may specify more than one decimal number per
card. Successive words are specified in the variable field and are separated by
commas. The first blank encountered in the variable field terminates it. The
data words generated by this instruction are assigned successively increasing

1-13

MC 63-4

storage locations; the location symbol, if present, is assigned the value of the
storage location of the first word.

The sign of a number is indicated by a plus or a minus preceding the num-
ber, exponent, or binary scale factor. The absence of any punctuation implies
a plus sign.

The variable field expression of a DEC instruction must be a numerical ex-
pression. The only characters admissible in such fields are commas, numerical
constants, plus (+), minus (-), period (.), E, or B.

Data generated by this pseudo-instruction is converted to one of three speci-
fied forms (binary integer, floating-point binary number, or fixed-point binary
number) according to the following rules:

a) Binary integer (with the binary point at the right end of the word) if
neither a period (.), B, nor E appears in the numerical expression.

b) Floating-point binary number if a period (.) or E, or both, but not B
appears in the numerical expression. The appearance of E may be
explicit or implicit.

1) The decimal exponent to be used in the conversion is the number
which immediately follows E. If E is not present, it may be
implied by a signed number.

2) The exponent is assumed to be zero if neither E nor a signed
number appears.

3) If the decimal point does not appear, it is assumed to be at the
right end of the word.

The expressions +12.345, 12.345, 1.2345E1, 1.2345 +1, 1.2345E +1,
1234.5E-2, 1234.5-2 and 12345E-3 are all equivalent representations
of the same floating-point number which is normalized following
conversion.

¢c) Fixed-point binary number if the character B appears in the numerical
expression:

1) The binary scale factor used in the conversion is the number
immediately following B and may be positive, negative, or zero.
(This factor is the count of binary positions between the left end
and the binary point of the fixed-point binary result.)

2) If the decimal point does not appear, it is assumed to be at the
right end of the word.

1-14

MC 63-4

3) The decimal exponent used in the conversion is the number im-
mediately following E or, in the absence of E, implied by a signed
number. If both B and E appear, the order of their appearance is
irrelevant. For example, 1.2E1B4, 1.2B4E1l, 1.2+1B4 and
1.2B4+1 are equivalent expressions.

Any word generated by a DEC pseudo-instruction which exceeds the limit of
a machine cell results in a zero and an error is indicated.

In a DEC pseudo-instruction, a blank variable field, successive commas in
the variable field, or a variable field ending in a comma all imply the generation
of a zero.

Octal (OCT)

This pseudo-instruction provides octal data to the program being assembled.
A single OCT instruction may specify more than one octal number per card.
Successive words are specified in the variable field and are separated by com-
mas. The first blank encountered in the variable field terminates it. Data
words generated by this instruction are assigned successively increasing stor-
age locations and the location symbol, if present, is assigned the value of the
storage location of the first word. (OCT is similar to the DEC pseudo-
instruction except for the kind of data generated.)

Octal numbers may be preceded by plus or minus signs; the absence of any
sign implies a plus sign.

Octal numbers appearing in the variable field of OCT may consist of from
one to twelve octal digits. The octal number may be signed if it is no greater
in magnitude than 377777777777. If twelve digits appear, the following equival-
ences exist with respect to the sign and high-order digit: -0=4, -1=5, -2=16
and -3 = 7. If a sign appears with an octal number greater in magnitude than
377777777777, if more than twelve digits are written, or if any characters other
than digits 0-7 appear in the variable field of this instruction, the conversion
results in zero and an error is indicated.

In an OCT pseudo-instruction, blank variable field, successive commas in

the variable field, and a variable field ending in a comma all imply the genera-
tion of the zero.

Binary Coded Information (BCI)

This pseudo-instruction provides Hollerith data in standard binary coded
decimal form to the program being assembled. The variable field of this instruc-
tion consists of one digit from 1-9, followed by a comma, followed by any charac-
ters (including the blank) which are acceptable to SCAT. Specified characters

1-15

MC 63-4

following the comma are packed together six to a 709/7094 word, and these
words are assigned successively increasing storage locations. The number of
words generated is specified by the digit preceding the comma. If a comma
does not follow the first digit of the variable field, an error indication is given.
Any location symbol associated with a BCI instruction is assigned the value of
the storage location of the first word generated by the instruction. The use of
another BCI card is required for more than nine words.

Library (LBR)

The LBR pseudo-instruction is used to extract a subroutine from a library
tape and incorporate it into the program being assembled. The complete for-
mat is:

Address,
Tag,
Location Operation Decrement
IDENT, U, CHANNEL
SUBR LBR AND TAPE NUMBER

If present, the location symbol is assigned to the first instruction in the
library program, provided that the first instruction is not EQU, SYN or BOOL.
If the first instruction already has a location symbol, it is replaced by the loca-
tion symbol of the LBR instruction.

IDENT and the Channel and Tape Number are used only to locate a subrou-
tine in the tape library. The IDENT may be a symbol or an integer. If it is a
zero or a blank, the location symbol is used as the identification. If the Channel
and Tape Number are zero or blank, it is assumed that the subroutine is on the
SCAT library tape, and the location symbol is used as the label in this case.

The symbol U (unrelativized) indicates to SCAT that the library subroutine
is not to be relativized. If the tag field contains any other symbol or is blank,
the program is to be relativized. Relativization is the process by which all
addresses in the library subroutine are expressed relative to the entry points
in the library program.

The SAP pseudo-instruction LIB is changed by SCAT to an LBR and executed
accordingly. However, the following conditions are assumed:

a) The subroutine is on the system tape.

b) The subroutine is relativized.

¢) The location symbol of LIB serves as the identification of the subrou-
tine being called for by LBR. All addresses within a subroutine are
expressed relative to the base point address.

1-16

MC 63-4

Variable Field Definition (VFD)

VFD is used to specify the division of words in other than standard prefix,
decrement, tag, and address fields. The variable field consists of defining
expressions, or subfields, which may specify three types of information:
symbolic, octal, and/or Hollerith. These subfields within the variable field
are of the following form:

nl/El’ On2/E2,Hn3/E3. Ceean

In the example above, n is a decimal constant indicating the number of bits to be
occupied by the subfield; E is an ordinary variable field expression; H indicates
a Hollerith subfield; and O indicates an octal subfield. All subfields are termi-
nated by a comma or blank; these may not be included among the specified char-
acters. If the given expression is longer than the designated n bits, the value of
the subfield is taken modulo 2B, i.e., the rightmost n bits are used. If it is
shorter, the leftmost bits are filled in with blank characters in the case of a
Hollerith subfield and with zeros for all other types of subfields.

The first subfield specified begins at the leftmost part of the first word
generated. If a location symbol appears, it is equated to the location of this
word. The next subfield begins to the right of the previously defined subfield.
If a subfield extends beyond the end of a word, it is continued from the left end
of the next word.

There is no limit to the number of subfields which may be specified by this
pseudo-instruction; however, the length of any subfield cannot exceed 63 bits.

All subfields give the actual expression and not the location of the expres-
sion. All expressions are computed modulo the length of the\subfield rather
than in the usual manner.

The expressions of the VFD variable field may be either ordinary or Boolean,
or both, but they cannot both be in the same subfield.

Unless prefixed by O, the numbers in the variable field expression are to
the base 10 even when they occur with Boolean symbols.

Et Cetera (ETC)

ETC is used only to extend the variable field of the previous instruction.
The variable field of the previous instruction must be terminated by a comma.
If the comma has significance within the field, the break must be made at an
insignificant comma. If the previous variable field does not terminate with a
comma, a comma is assumed and an error is indicated. In any event, the

1-17

MC 63-4

variable field of an ETC pseudo-instruction is considered an extension of the
variable field of the previous instruction, commencing at a comma, i.e., with
a complete expression.

An ETC pseudo-instruction may not have a location symbol associated with
it. The following points about ETC should be clearly understood:

a) If a comma has significance within a field which is being extended by an
ETC instruction, the break must occur at a comma which separates
fields, i.e., the comma signalling the ETC must not be introduced with-
in an expression.

b) The variable field of ETC does not begin with a comma. In fact, it does
not differ from any other variable field. In the preliminary descrip-
tion of SCAT, it is stated that ""the variable field of an ETC pseudo-
instruction is considered an extension of the variable field of the pre-
vious instruction, commencing at a comma, i.e., with a complete
expression.' This is true but could be misleading. The critical word
is "at"-the expression commences immediately after a comma, but does
not include the comma.

c) An ETC may follow only a VFD pseudo-instruction, the MACRO pseudo-
instruction, or any operation code calling for the generation of a system
or programmer macro, and nothing else.

Remarks (*)

The pseudo-instruction asterisk, *, (indicated in column 1 of a card) enters
commentary material, which is to appear on a listing into the program being
assembled. The remaining 71 positions of the symbolic card may be used as a
comment field.

This pseudo-instruction has no location field (the asterisk is not recognized
as such), operation code field, or variable field. It has no effect upon the
assembly process.

1.1.1.9 Macro-Instructions

A macro-instruction generates a word or a sequence of words. Parameters
required by the macro subroutine must appear in the variable field of the macro-
instruction. These parameters are incorporated into the word or sequence of
words generated by the macro-instruction during the compilation (rather than at
the execution time) of the object program.

1-18

MC 63-4

There are two types of macro-instructions in SCAT: system and program-
mer. System macros are provided for in the Compiler. Programmer macros
are innovated in the source program.

System Macro-Instructions

The generation of a system macro-instruction is called for when its code
name appears in the operation code field. The variable field specifies the param-
eters to be used in the generated sequence of words. Any location symbol
associated with the macro-operation is assigned as the location symbol of the
first of the generated words.

At present there are two macro-instructions which have been incorporated
into the Compiler: BEGIN and RETURN. It is assumed that many such macro-
instructions will be available in the Compiler and that others will be added by
installations to perform special jobs.

a) BEGINK, T, I, E—the BEGIN macro-instruction generates the basic
subroutine linkage recommended by the Share Operating System Com-
mittee. The parameters K, T, I and E are defined as follows:

K—location of the normal return relative to the TSX. The exit trans-
fer is TRA K, 4.

T—specification of the index registers to be saved. Index register 4
should always be saved as a debugging aid.

I-If I is 1, the sense indicators are to be saved and restored; if I = 0,
or blank, they are not to be saved or restored.

E—specifies whether to save and restore a cell to indicate what channel
traps should be enabled.

The number of resulting instructions equals 2X + 31+ 2, where X is
the number of index registers specified by T and I is as defined above.

The maximum and minimum sequences for the corresponding macro-
instructions are given below.

Maximum Sequence:

SR BEGIN 2,17, 1 SR TXL *47
AXT 0,4
AXT 0,2
AXT 0,1
LDI *+2
TRA 2,4

1-19

MC 63-4

b)

1-20

PZE
STI1 *-1
SXA *-5,1
SXA *-7,2
SXA *-9,4
Minimum Sequence:
SR BEGIN 2,4 SR T™XL *+3
AXT 0,4
TRA 2,4
SXA *-2,4

A RETURN SR, n—this macro-instruction specifies the error code and
generates the instructions necessary for the normal and error exits
from the routine. If present, A is the location of the first generated
instruction; SR identifies the subroutine. This identification is neces-
sary since RETURN need not refer to the most recent BEGIN macro-
instruction. The error code, n, is stored in the decrement of the first
generated instruction of the associated BEGIN.

If no error return procedure is desired, n is zero or blank. In this
case, one instruction results:
TRA SR +1

If n is specified, the following sequence is generated:

AXT n, 4

XD SR, 4

LXA SR+1, 4
TXI SR+ 2, 4,1

The use of the system macro-instructions is illustrated below:

Source Program Object Program
SR BEGIN 2,171 SR TXL *+7
TPL SR2 AXT 0, 4
SR1 RETURN SR, 1 AXT 0, 2
SR2 DVP X AXT 0,1
STQ Y LDI *+2
SR3 RETURN SR TRA 2, 4
PZE
STI *-1
SXA *-5,1
SXA *-7,2

MC 63-4

Source Program Object Program
SXA *-9, 4
TPL SR2
SR1 AXT 1, 4
SXD SR, 4

LXA SR+1, 4
TXI SR+2, 4, 1
SR2 DVP X
STQ Y
SR3 TRA SR+1

Programmer Macro Instructions

In addition to system macro-instructions, the Compiler processes macro-
instructions defined by the programmer for use in the program being compiled.
The definition is introduced to the Compiler by the MACRO pseudo-instruction
which must have the code name of the programmer macro in its location symbol
field and the code MACRO in its operation field. The location symbol must be
from one to five characters in length, must be completely alphabetic, and must
not be the code name of a machine operation, a pseudo-operation, or a system
macro-operation. If the given code name is that of a previously defined pro-
grammer macro-instruction, the new definition replaces the former one.

The MACRO card lists in its variable field the parameters to appear in the
defining example. All these parameters must be nonconstant. The variable
field may be extended by ETC cards. However, the maximum number of para-
meters which can be specified by a MACRO pseudo-instruction and its associated
ETC cards is 32. They are separated by commas.

The instructions which constitute the defining example follow the MACRO
card in a sequence terminated by an END card. A defining instruction may have
in its variable field any valid combination of symbols and connectors. All loca-
tion symbols are variable field symbols of the defining example and must have
appeared in the parameter list of the MACRO card.

Although the example used to illustrate the technique of writing macro-
instructions shows all the variable field symbols as appearing in the parameter
list, it is not necessary that such symbols be included among the parameters.
However, all location symbols must appear elsewhere in the program.

If symbols appear in the parameter list and elsewhere in the program,

preference is given to their definitions in the parameter list in attempting to
define a programmer macro-instruction.

1-21

MC 63-4

The following example illustrates a MACRO pseudo-instruction and its
definition.

POLY MACRO COEFF, INVAR, DPVAR, DEG
ETC T, Z
AXT DEG, T
LDQ COEFF
DPVAR FMP ASINVAR
Z COEFF + DEG + 1, T
XCA
TIX DPVAR, T, 1
END

The location symbol of the MACRO pseudo-instruction becomes the opera-
tion code of the defined programmer macro-instruction. The number of instruc-
tions generated by a programmer macro-instruction is always the same as the
number in the defining example. For example, the symbol POLY (defined above)
could be used to form the macro-instruction:

POLY Cl+ 10, X, FX, 3, 4, FAD

which would then generate the following sequences, or skeleton, in accordance
with the pattern of the defining example:

AXT 3, 4

LDQ Cl+ 10
FX FMP A$X

FAD Cl+ 14, 4

XCA

TIX FX, 4, 1

In the coding example, the first two instructions of the defining example are:

POLY MACRO COEFF, INVAR, DPVAR, DEG
ETC T, Z

The entire example is correct as shown. It is desirable, however, to be very
explicit about the following:

A parameter used in the defining example must
not be the mnemonic for any instruction.

As the example shows, it is permissible to have one of the parameters
represent an operation code in the manner in which Z stands for FAD. This
means that an operation code may be included among the parameters of a de-
fined macro-instruction, as the following example illustrates:

POLY Cl+ 10, X, FX, 3, 4, FAD

1-22

MC 63-4

The restriction mentioned here applies only to the parameter list of the defining
example.

A system macro can occur in the definition of a programmer macro; a pro-
grammer macro cannot occur in the definition of a programmer macro.

Note that the parameters of the defined macro-instruction may be symbolic
or absolute, that they have a one-to-one correspondence with the dummy param-
eters of the MACRO pseudo-instruction, and that they have replaced the dummy
parameters in the generated skeleton. Symbols which are to appear in the varia-
ble fields of the generated instructions may appear elsewhere in the source pro-
gram. However, symbols to appear in the location fields of the generated
instructions must not appear elsewhere in the program. This would result in
multiple definition of the symbols.

Properties of Both System and Programmer Macro-Instructions

a) A location symbol is identified with the first instruction generated.

b) The variable field may consist of expressions and simple symbols.
Any expression which ultimately appears as a divisor of a fraction
in a variable field may have only one symbol.

c) The variable field may be extended by ETC cards.

1.1.1.10 List Control Pseudo-Instructions

The Compiler provides the following as a listing: symbolic program with
comments and alter and relative numbers; page heading, page number, and date
on each page; an optional octal or decimal absolute program; error tables con-
taining duplicated symbols, undefined symbols, and the total number of error-
flagged instructions; and an optional symbol table which gives the symbol and
page number. The list may be used in finding symbols in the listing when no
absolute program is printed.

The following list control pseudo-instructions are provided to edit the list-
ing of any program:

a) LIST—the LIST pseudo-instruction causes printing in the normal mode—
all cards are listed without printing in detail, i.e., without printing
words generated by pseudo-instructions (OCT, VFD, DEC, LBR and
BCI) or by macro-instructions.

b) UNLIST—an UNLIST instruction completely suspends printing until a
LIST instruction is encountered.

1-23

MC 63-4

¢) DETAIL—if the instruction DETAIL (with a blank variable field) is en-
countered, any printing which is currently in progress continues with
complete detail, i.e., the machine words generated by macro-instruc-
tions (system and programmer macros), LBR, DEC, OCT, BCI and
VFD instructions, are printed. The effect of a DETAIL instruction is
nullified when a TITLE, LIST, or UNLIST instruction is encountered.

d) TITLE—a TITLE instruction causes any printing currently in progress
to be continued in the normal mode (i.e., without any detail) until a sub-
sequent DETAIL instruction or an UNLIST instruction is encountered.

If printing is already in progress in the normal mode, or if no printing
is in progress at all, a TITLE instruction has no effect.

1.1.1.11 SCAT 709/7094 Machine Instructions

Included in the list of machine instructions (although they are not actually
machine instructions) are those operation codes which may be used to assign
arbitrary values to the prefix and sign of calling sequence words. They are
listed as a group below:

Alphabetic Code Name Octal Code
MZE Minus zero -0
MON Minus one -1
MTW Minus two -2
MTH Minus three -3
PZE Plus zero +0
PON Plus one +1
PTW Plus two +2
PTH Plus three +3
FOR Four -0
FVE Five -1
SIX Six -2
SVN Seven -3

The codes listed below with information concerning address (A), tag (T),
decrement (D), and indirect addressing (I) appear under various headings and
are defined as follows:

N—this entry under the columns A, T, D and I indicates that the cor-
responding instruction should not have an address, tag, decrement
or indirect address, respectively. A zero in the address, tag, or
decrement does not violate this restriction. If the prescribed field
is specified, it is processed as given and an error is noted.

1-24

MC 63-4

Y—this entry under a column heading indicates that the specified parts
of the corresponding instruction should occur. If the field is to be
provided by the program, a zero should be used.

O—this heading under column A indicates that the address field must be
an octal number or Boolean symbol.

I—this entry under column T indicates that the tag field, if specified,
must be a 1 or an expression with an equivalence of 1. No other non-
zero tag is permitted.

C—there are six instructions (CAQ, CRQ, CVR, VDH, VDP, VLM)
which use the decrement field as a count. C appears under column
D of these instructions to indicate that the count is required.

1.1.2 SOS PRODUCED PROGRAM LISTINGS

This subsection describes the form of program listings produced by the SOS
system. The material is included here to introduce the Modify and Load pseudo-
operation presented in subsection 1. 1.3, since references to information in the
program listings are necessary in that subsection.

The purpose of the SOS listing facilities is to provide means of obtaining
necessary information when making program modifications. Listings produced
by SOS are made in symbolic form since this is the most useful method for
determining necessary changes.

Symbolic listings of a squoze deck reproduce, with some exceptions, the
symbolic source deck program including modifications incorporated by the
punching of a new squoze deck. The exceptions never reproduced are:

a) Invalid operation codes, which are replaced in the listing by ///.

b) Invalid symbols, such as those longer than six characters, which are
replaced by //////.

c) The shortened forms of extended operation codes which are changed
and listed in their extended forms, e.g., the instruction WRS 1169 is
listed as WTBB 1.

Also, words generated by the BCI, DEC, LBR and OCT instructions or by
macro-instructions are not normally listed in detail. Instead, only a title line
and the first word generated by these instructions are printed. However, these
may be listed in detail if the pseudo-op DETAIL is used as previously defined.

1-25

MC 63-4

When a squoze deck is listed, the comments are aligned with the first com-
ment in the program and therefore may not be lined up exactly as in the source
deck listing.

Symbolic listings show the job title, page number, and date in the upper
right-hand corner of each page and are followed by 50 lines of printing. The
listing itself consists of several parts.

The symbolic instructions for the program are listed, and octal equivalents
are normally given. These instructions are assigned numbers from two refer-
ence systems (i.e., relative and alter numbers) as described below.

Appearing next, at the option of the user, is a listing of all defined symbols
used in the program. These symbols appear five on each line, in alphabetic
order. Multiply-defined symbols appear at the end of the table with the numbers
of the pages on which they appear.

1.1.2.1 Reference Systems

The two numbering systems previously mentioned (relative and alter) are
used to refer to words in a program. These numbers are assigned initially by
the Compiler and are changed, if necessary, by Modify and Load when a new
squoze deck is punched.

Relative Numbering

A relative number is an integer which indicates position of a machine word
relative to a preceding word having a location symbol. The positions thus indi-
cated are the relative positions of instructions the last time a squoze deck was
punched.

Since relative numbers, in a sense, indicate storage locations occupied by
machine words, they are assigned only to those instructions which, when loaded
for execution, occupy locations. Thus, relative numbers are never assigned to
principal pseudo-instructions (BES, BOOL, BSS, END, EQU, HEAD, ORG,
SYN, TCD), generative pseudo-instructions (BCI, DEC, DUP, LBR, OCT), or
programmer macro-instruction definitions.

Relative numbering begins when the first location symbol of a program is
encountered. The word associated with this symbol is numbered 0 (although not
shown on listings) and the next word is numbered +1. Numbering continues until
either another word with a location symbol or an instruction with a principal
pseudo-operation is encountered. When a new symbol is encountered, the proc-
ess is started again. If, however, relative numbering is suspended by one of
the pseudo-operations, it is not reinitiated until a new symbol is encountered.

1-26

MC 63-4

Words for which a positive relative number cannot be computed are given a nega-
tive relative number, i.e., a number relative to a succeeding symbol, if that can
be computed. If neither can be computed, no relative number is shown.

Although only one relative number is shown on the listing for a given word,
there exists, in general, many other equivalent relative numbers, both positive
and negative, any one of which may be used when referring to that word. For
example, in the following list, the word numbered +1, relative to the symbol
MASK, has the equivalent number +7, relative to RESTOR, or -1, relative to
WRITE, etc.

82 RESTOR AXT **0, 1 RESTOR

83 +1 AXT *%x0, 2 INDEX REGISTERS

84 +2 AXT **0, 4 CONTENTS

85 +3 AXT 2,4 RETURN

86 +4 SLN 1 TURN SENSE LIGHT 1 ON
87 +5 TRA PRINT

88 MASK OoCT 373737373737

89 +1 OCT 371737773777

90 WRITE PZE WKAREA, ,24

91 IMAGE BSS NUMBER, 0

92 NUMBER EQU 24

93 ZERO EQU 0

94 TSTBIT PZE STORAGE FOR TEST BIT
95 END PRCOMM

There is no number for a word relative to a symbol which is separated from
that word by a principal pseudo-operation. For example, in the listing the
words preceding the BSS with the location symbol IMAGE have no numbers
relative to the symbol TSTBIT.

Alter Numbering

Alter numbers are numbers for the symbolic cards in a source program
deck; they are assigned to all cards except:

a) Those which contain ETC and MACRO instructions

b) Those which define programmer macro-instructions

c) The Modify and Load pseudo-instructions

Generative pseudo-instructions (such as BCI) and programmer macro-

instructions are assigned alter numbers. The words generated by the instruc-
tions are not assigned numbers.

1-27

MC 63-4

1.1.2.2 Sample Listing
The following sample presents the data found on an SOS symbolic listing:
a) Storage locations in octal
b) Octal equivalent of each instruction
c) Alter numbers
d) Symbolic locations
e) Relative numbers
f) Operation codes

g) Variable field (containing the address, tag, and decrement portions
and/or a comment section)**

a b ¢ d e f g
TRI FUN HLS 12401/41 Page 1

1* TRIG FUNCTION Problem

2% HOMER SNIDER

3* JOB VGPP, SIN, COS

4 ORG | 15000
35230 | 0 77400 1 00132 |5 | XA AXT | 90,1 Generate
35231 | 0 50000 0 35602 | 6 | XAl CLA | ZERO fixed-
35232 | 0 40000 0 35736 | 7 +1| ADD | ONEX < point
35233 | 0 60100 1 35736 | 8 | XA2 STO | FIXED-91,1 ?numbers
35234 | 2 00001 1 35232 |9 | XA3 TIX |[*-2,1,1 0 to 90
35235 | 0 77400 1 00022 | 10 | XA4 AXT | 18,1 Generate
35236 | 0 50000 0 35737 | 11 | XA5 CLA | ONEF Sﬂoating—
35237 | 0 30000 0 35737 | 12 +1|FAD | ONEF . point
35240 | 0 60100 1 36010 | 13 | XA6 STO | Float-18,1 (numbers
35241 | 2 00001 1 35237 | 14 | XA7 TIX |*-2,1,1 2 to 19
35242 | 0 50000 0 35737 | 15 | XAS8 CLA | ONEF Float one.
35243 | 0 60100 0 35740 | 16 +1|STO | E
35244 | 0 77400 2 01166 | 17 + 2| AXT |630,2
35245 | 0 77400 1 00266 | 18 + 3| AXT | 182,1

CORE | FIXED, X, 0, 0

35246 | 0 62500 0 19 | CORE| 1]|STL | 2169

**The variable field section must start in column 16. The comment section
must be separated from the end of a preceding variable field by at least one
blank. In no case can it start to the left of column 17.

1-28

MC 63-4

1.1.3 SOS MODIFY AND LOAD

The input to the SOS Compiler is a symbolic source program from which a
compact binary-coded symbolic (squoze) program deck is produced. This deck

contains all information supplied in the source program, including remarks
cards and comments from instruction cards. Squoze decks produced by the
Compiler may be used with symbolic decks as input to subsequent Compiler
passes to produce one squoze output deck. Thus, a program can be written
in parts and each part debugged before all are combined.

Squoze decks produced by the Compiler are also used as input to Modify
and Load. Since all symbolic information is available, Modify and Load has
three major advantages over previous assembly systems:

a) Changes in symbolic form can be incorporated into the program by
Modify and Load.

b) Symbolic changes do not require the source deck to be reprocessed
by the Compiler.

c¢) Symbolic information is available and may be retained for printing
during debugging runs, thus making debugging easier.

The main functions performed by Modify and Load are:

a) Modification of a squoze program on the basis of symbolic information
supplied with the squoze deck.

b) Loading the modified version of a program into storage in preparation
for execution of the program.

In addition to the above, Modify and Load also offers the following features:

a) When desirable, a new squoze deck incorporating symbolic modifica-
tions may be prepared. (A new squoze deck is automatically prepared
when a modification affects a heading card.) Generally, this option
should be exercised when the number of modification cards is approxi-
mately equal to the number of cards in the squoze deck.

b) A symbolic listing of a program can be prepared from a squoze deck
which includes no modifications. (A new symbolic listing is automati-
cally prepared when a new squoze deck is punched.)

¢) An absolute binary version of a program may be obtained from a squoze
deck. Although this option is available to the user, little benefit is
derived by exercising the option until a program has been completely
debugged, since the debugging and modification features of SOS can only
be used with squoze program decks.

1-29

MC 63-4

1.1.3.1 Pseudo-Operations

The SCAT language includes five pseudo-operations by which changes may
be made to a program at Modify and Load time. The use and effect of these
pseudo-operations are described below.

To accomplish modifications, the modification instructions and any words
to be inserted in a program are punched in symbolic form and used as input with
the squoze deck. The changes indicated in these cards are made in the program
before it is loaded into storage, but do not affect the squoze deck until a new
deck is punched. At that time, the changes are physically incorporated in the
new squoze deck.

The effects of the modification pseudo-operations, when loading a program
into storage and when preparing a new squoze deck, are equivalent to and could
be accomplished by making the required changes in the original symbolic source
program, reprocessing with the Compiler, and then loading the new squoze deck.
In the discussion that follows, only the effects which the pseudo-operations have
on the squoze deck are indicated.

Throughout the discussion, each change is indicated as though it were the
only one affecting the program, regardless of the actual number. That is, all
changes must be indicated in terms of the current deck and the associated listing.

CHANGE

The CHANGE pseudo-operation can be used to delete words from a program,
to insert additional words into a program, or to do both, depending on the form
of the instruction. When CHANGE is used, modifications are specified in terms
of relative numbers.

CHANGE instructions may be used to delete or insert words with which loca-
tion symbols are associated, in which case the location symbol is also inserted
or deleted. When a word which has a location symbol is deleted, the symbol is
deleted from the dictionary and may, therefore, be used subsequently as a loca-
tion symbol for another word. No location is required with CHANGE; if one is
present it is ignored.

Two forms of the CHANGE instruction are permissible. The first is:

1
| Location Operation Address, Tag, Decrement/Count
|
1) 2 6 7 8 14 15 16
|
{ CHANGE A+n, B+m {

1-30

MC 63-4

A + n and B + m represent relative expressions, i.e., A and B are symbols and
m and n are integers which may be positive, negative or zero.

This form indicates that all words in location A + n to B + m, inclusive, are
to be deleted from the program. If, in addition, symbolic instruction cards im-
mediately follow an instruction in this form, the instruction also indicates that
the words in the symbolic cards are to be inserted beginning with location A + n.
Since insertions are made as in an assembly, the words following B + m are
automatically adjusted and the number of insertions and deletions need not be
equal.

When any, but not all, of the words generated by either BCI, DEC, LBR,
MACRO, or OCT are deleted by a CHANGE, each of the subfields remaining
from the original instruction is carried as a separate word and is assigned a
separate alter number. In the listing, however, only the absolute word and
relative and alter numbers are shown. No symbolic information is shown in
the operation, variable, and comments fields. In all other changes to which a
CHANGE can apply, the comments associated with deleted words are deleted
from the squoze deck; remarks cards falling within the range of deletion by a
CHANGE are not deleted from the program.

When a CHANGE instruction of the form shown above affects a headed area,
it must be written:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
CHANGE H3A, HB+m (

where H represents a heading character.

The second form permitted is:

Location Operation Address, Tag, Decrement/Count
11 2 6 7 8 14 | 15 | 16
CHANGE A+n S

where A is a symbol and n is an integer which may be positive, negative, or zero.

1-31

MC 63-4

This form of a CHANGE instruction indicates that the symbolic instruction
cards which immediately follow it are to be inserted between the words in loca-
tion A+nand A+ n+ 1. No deletions are made. If no symbolic cards follow an
instruction in this form, the instruction is ignored.

When a generative pseudo-operation is inserted into a program by means of
a CHANGE instruction, the individual terms are not assigned separate alter

numbers.

When insertions are to be made in a headed area, the second form of the
CHANGE instruction is written:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
CHANGE K$A+n j

where K represents a heading character and A + n is as previously described.

In the following list of restrictions, all statements are made in terms of
the headed forms of CHANGE. These restrictions can be applied to the
unheaded forms by considering an unheaded symbol to be headed by a blank.

Restrictions:

a)

b)

c)

d)

e)

1-32

In a CHANGE instruction of the first form, H$A + n must be either
less than or equal to H$B + m; otherwise, the CHANGE and the
symbolic cards following it are ignored.

No principal pseudo-operation (BES, BOOL, BSS, END, EQU,
HEAD, ORG, SYN, TCD) may appear within the range of the
symbols A to B + m.

No principal pseudo-instruction, listing pseudo-instruction, or
remarks card may appear as an insertion by means of a CHANGE.
Any insertion which violates this restriction is ignored.

Remarks cards and listing pseudo-operations cannot be deleted by
a CHANGE. When remarks cards or pseudo-operations appear
between H$A + n and H$B + m, inclusive, they are not affected

by the CHANGE.

No CHANGE instruction should specify the deletion of only part of
the words generated by a VFD pseudo-operation.

MC 63-4

f) If a programmer macro-instruction is inserted by means of a
CHANGE, the definition must also be included with the group of

modifications.

This does not mean that the definition must be

included with the same CHANGE that is to insert the macro-
Instead, it may be included by an ALTER or by

instruction.
another CHANGE.

The definition may also be placed in front

of the group of modifications and need not be preceded by a
Modify and Load pseudo-operation.

g) A modification by a CHANGE instruction must not overlap another
modification by an ALTER (see below) or a CHANGE.

Example 1: Assume that the instructions with the alter numbers 79 and 80
in the following listing are indicated to be in error.

78 1
79 EXIT
80 1
81%*

TRA

1

CLEAR + 4
AXT »1

RETURN

IF SENSE LIGHT 1 IS ON DO NOT
RESTORE INDEX REGISTER 1

To remove the error indication by means of a CHANGE, the following in-
structions are necessary:

: Location Operation Address, Tag, Decrement/Count
1, 2 6 8 14 | 15 | 16

| CHANGE EXIT, EXIT+1
EXIT AXT **0, 1
—-:—’ SLT 1

(NOTE: **0 was arbitrarily selected to indicate modified addresses.)

Assuming there are no modifications which affected the alter numbering of
previous instructions in the listing, the instructions corrected would appear in
a listing of the modified deck as:

78 +1
79 EXIT
80 +1
81%*

TRA
AXT
SLT 1

CLEAR + 4
*%0, 1

RETURN

DO NOT RESTORE IR 1

(The octal absolute has been omitted for the sake of clarity; however, the abso-
lute equivalents would also be changed.)

1-33

MC 63-4

Example 2: Assume that the instruction SLT 1 is to be inserted following

the instruction which has an alter number 9 in the list below without deleting
any instructions.

6 PRCOMM CLA 1,4 GET PRINTER CONTROL WORD
7 +1 TDL * 2
8 +2 WPDA DOUBLE SPACE PRINTED IF
9 +3 WPDA CONTROL NEGATIVE, SINGLE IF +
10 +4 SXA RESTOR, 1 SAVE INDEX
11 +5 SXA RESTOR+1,2 REGISTER
The required modification cards are:
Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 | 15 16
CHANGE PRCOMM +3
SLT 1

After this change has been made, the listing appears as follows (assuming
that there are no changes which affect previous instructions):

6 PRCOMM CLA 1,4 GET PRINTER CONTROL WORD

7 +1 TPL *+2

8 +2 WPDA DOUBLE SPACE PRINTER IF

9 +3 WPDA CONTROL NEGATIVE, SINGLE IF +
10 +4 SLT 1

11 +5 SXA RESTOR, 1 SAVE INDEX

12 +6 SXA RESTOR +1, 2 REGISTER

ALTER

The ALTER pseudo-operation is analogous to CHANGE in that it may occur
in two forms similar to those of CHANGE and may be used to make insertions,
deletions, or both. ALTER, however, inserts and/or deletes the equivalents of
symbolic source program cards instead of machine words.

There are two permissible forms for ALTER. The first is when N1 and N2
represent alter numbers.

1-34

¢ MC 63-4
Location Operation Address, Tag, Decrement/Count
112 6 |71 8 14 | 15 | 16
ALTER Nl’ N2 {

This form indicates that the information corresponding to alter numbers N;
through Ng, inclusive, is to be deleted from the program. If symbolic cards
are associated with an ALTER instruction in this form, the instruction also
indicates that the cards are to be inserted into the program between N; -1 and
N2 +1. As with CHANGE, the number of insertions need not be equal to the
number of deletions since the words following N, are automatically adjusted.

In the second form N is also an alter number:

Location Operation Address, Tag, Decrement/Count
1] 2 61718 14 | 15 { 16
ALTER N g

This form indicates than no deletions are to be made and that the associated pro-
gram modification cards are to be inserted between the symbolic instructions
numbered N and N + 1.

Restrictions:

a)

b)

c)

d)

For an ALTER instruction on the first form, N; must be less than
or equal to No; otherwise, the instruction and tilme symbolic cards
to be inserted are ignored.

Remark cards and DETAIL, LIST, TITLE, and UNLIST pseudo-
instructions cannot be deleted by an ALTER. When an ALTER
specifies alter numbers which include one of these in their range,
the ALTER does not affect the remarks cards or listing pseudo-
instructions.

An ALTER instruction cannot delete an END card without also
inserting an END card.

An ALTER cannot insert an END card without also deleting an END

card. If an ALTER includes an END and does not specify the dele-
tion of an END, the END to be inserted is ignored.

1-35

MC 63-4

e) If a programmer macro-instruction is inserted by an ALTER, the
definition must also be included with the list of modifications.
This does not mean, however, that the definition must be included
with the same ALTER that is to insert the macro-instruction.
Instead, it may be included by a CHANGE or by another ALTER.
The definition may also be placed in front of the group of modifica-
tions and need not be preceded by a Modify and Load pseudo-
instruction.

f) A modification by an ALTER must not overlap a modification either
by another ALTER or by a CHANGE.

Example 1: Assume that the instruction is to be corrected with alter num-
ber 5 in the following listing:

4%
5x ORG START
6 PRCOMM CLA 1, 4 GET PRINTER CONTROL WORD

The instructions necessary to accomplish the corrections are:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
ALTER 5,5
ORG 3000

After this correction has been incorporated and, assuming that there are
no changes which affect the preceding remarks cards, the listing appears:

4%
5 ORG 3000
6 PRCOMM CLA 1, 4 GET PRINTER CONTROL WORD

Example 2: Assume that in the following listing the instructions with alter
numbers 92 and 93 are to be deleted.

91 NUMBER EQU 24

92 NUMBER EQU 12

93 ZERO EQU 0

94 TSTBIT PZE STORAGE FOR TEST BIT

1-36

MC 63-4

The required instruction is:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
ALTER 92, 93 <

After this change is made the listing appears (assuming no modifications affect-
ing preceding instructions) as:

91 NUMBER EQU 24
92 TSTBIT PZE STORAGE FOR TEST BIT

SYMBOL

The SYMBOL instruction permits the assignment of a location symbol to
a word without requiring the deletion and subsequent insertion of the word.

There is one form of a SYMBOL instruction:

Location Operation Address, Tag, Decrement/Count
1] 2 6 7 8 14 | 15 | 16
B SYMBOL A+n S

B represents a symbol of from one to six characters which is to become associ-

ated with the word previously assigned the relative location expression A + n
(use relative numbers only).

If SYMBOL is used to associate a location symbol with a word which already
has a location symbol, the new symbol does not replace the old; instead, the two
are made synonymous by an EQU instruction. However, if the symbol in the
location field of the SYMBOL instruction has been previously defined in the pro-

gram, it is defined again with the new value and becomes a doubly-defined
symbol.

If the location field or the variable field of a SYMBOL instruction is blank,
the instruction is ignored.

When a SYMBOL instruction is to assign a symbol to a word in a headed
area (for example, when A is headed) the instruction is written:

Location Operation Address, Tag, Decrement/Count

1] 2 61 7] 8 14 | 15| 16

B SYMBOL H$A +n

L~

1-37

MC 63-4

H is the character by which A is headed; B and A + n are as described previously.

Restrictions: If a principal pseudo-operation appears in the range H$A and
H$A + n, inclusive (or if A is unheaded), the SYMBOL pseudo-instruction above
has no effect on the program.

Example: Assume that a symbol must, for convenience, be assigned the
instruction with alter number 25 in the following listing:

16 CON6 PDX 6,2
17 +1 LGR 18 COMPUTE # INSERT WORDS -
18 +2 ADD 1,4 START ADDRESS AND
19X +3 STO ////// STORE.
20 +4 CLA CON6 INITIALIZE FOR OCTAL IF TAG
21 +5 TQP *+2 OF PRINT CONTROL IS 4.
22 +6 ARS 1 IF OUTPUT IS OCTAL STORE
23 +7 STA STRTWD-2 3 IN CONVERSION ADDRESS
24 +8 CLA SWITCH
25 +9 LLS 0
26 +10 STO SWITCH
27 +11 AXT 24,1
28 +12 TCOA * DELAY UNTIL CHANNEL AVAILABLE
29X +13 NOP WKAREA+23,1
30X +14 STZ WKAREA+24,1 CLEAR WORK AREA FOR
31 CLEAR TIX *+1,1,1 CONVERSION
Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
SHIFT SYMBOL CON 6+9 j

no other changes) as:

16
17
18
19X
20
21
22
23
24
25

1-38

CON6 PDX
+1 LGR
+2 ADD
+3 STO
+4 CLA
+5 TQP
+6 ARS
+7 STA
+8 CLA

SHIFT LLS

6,
18

2

1,4
/11117
CON6
*+2

1

STRTWS-2
SWITCH

0

The symbol instruction above would appear in a subsequent listing (assuming

COMPUTE # INSERT WORDS -
START ADDRESS AND

STORE.

INITIALIZE FOR OCTAL IF TAG
OF PRINT CONTROL IS 4.

IF OUTPUT IS OCTAL STORE

3 IN CONVERSION ADDRESS

MC 63-4

26 +1 STO SWITCH

27 +2 AXT 24,1

28 +3 TCOA * DELAY UNTIL CHANNEL AVAILABLE
29X +4 NQP WKAREA+23,1

30X +5 STZ WKAREA+24,1 CLEAR WORK AREA

31 CLEAR TIX *+1,1,1 FOR CONVERSION

ASSIGN
The ASSIGN pseudo-instruction defines or redefines symbols by insertion

of EQU, SYN or BOOL cards. The form of an ASSIGN instruction is illustrated
below:

Location Operation Address, Tag, Decrement/Count §
112 14 | 15 | 16

6 | 7] 8 \

ASSIGN H §

where H represents a heading character which may be a blank.

This instruction must be followed by at least one EQU, SYN or BOOL in-
struction to perform one of the following functions:

a) To define new symbols and undefined symbols in a program.

b) To redefine symbols originally defined in a program by EQU, SYN or
BOOL instructions.

An ASSIGN instruction may not be followed immediately by any instruction
other than EQU, SYN, BOOL or SYMBOL. (Note that a SYMBOL following an
ASSIGN does not terminate the effect of the ASSIGN.)

If an ASSIGN instruction specifies a non-blank heading character, all the
symbols used in the following EQU, SYN, and BOOL instructions are headed
by that character. (In addition, the only EQU, SYN, and BOOL instructions
processed are those for which the location symbol has been previously defined
by an EQU, SYN or BOOL card and is not multiply defined. Under these condi-
tions, the new definition replaces the old one.)

When an ASSIGN specifies a blank heading character, the EQU, SYN, and
BOOL instructions are treated as follows:

a) If the symbol in the location field of a SYN, EQU, or BOOL instruc-

tion is undefined or is new to the program, the symbol becomes defined
as usual. The EQU, SYN, or BOOL instruction defining the symbol is

1-39

MC 63-4

inserted at the beginning of the program, preceded only by remarks
included at the beginning of the source program deck.

b) If the symbol in the location field of a SYN, EQU, or BOOL instruction
is defined in the new program by a SYN, EQU, or BOOL and is not
multiply defined, the new definition replaces the old one at the same
point in the program.

¢) In all other cases, the symbol in the location field of a SYN, EQU or
BOOL instruction is multiply defined in the program.

When a SYMBOL card follows an ASSIGN, the location symbol is headed by
the heading character of the ASSIGN, if the location symbol is less than six
characters long.

The symbol in the variable field of the SYMBOL is also considered headed
under the same condition.

Example: Assume that the symbols WKAREA and IMAGE are to be equated
in a program. The instructions necessary are:

Location Operation Address, Tag, Decrement/ Countj
ASSIGN
WKAREA SYN IMAGE

The listing might then appear as follows (assuming there are no modifica-
tions which affect the four remarks cards at the beginning of the source program):

4%
5 WKAREA EQU IMAGE
6X ORG START

1.1.4 SOS DEBUGGING MACROS

The principal function of debugging macros is to permit the programmer to
investigate the contents of storage or control panel during the execution of his
program. The debugging macros are used during the development phases of a
program and are removed after debugging has been completed.

The debugging macros can be thought of as extensions of the pseudo-
operations of the SCAT source language and, as such, can be inserted into
the program either while coding or as modifications during Modify and Load.
In the latter case, use of the ALTER pseudo-operation inserts the debugging
macro at the desired location in the program.

1-40

MC 63-4

When the Compiler or Modify and Load interprets a debugging macro, a
TXL branch occurs to the debugging subroutine, the function called for is exe-
cuted, all main program indicators and storage cells are restored, and program
control returns to the main program at the instruction immediately following
the debugging macro.

Through the use of debugging macros, the programmer has the option of
specifying the format of information to be printed and if the data is to be printed
on-line or off-line.

There are several categories of debugging macros: information macros,
which request information output; modal macros, which specify the format of
the output; and conditional macros, which permit output selectivity.
1.1.4.1 Variable Fields

Since the function of debugging macros is varied, the variable field of the
macros is adapted to the function of each. In general, the variable fields con-

tain three types of information: location, format and count:

a) Location—specifies the proper area of activity for core storage cells
and the index.

b) Format—indicates the format required for output results of information
macros; specified format of VFD-introduced blocks of storage.

c) Count Specifies:
1) Position of binary point in fixed-point format
2) Number of times a conditional macro is satisfied or unsatisfied

3) Increment of every conditional macro

A typical debugging macro may be:

Location Operation Variable Field
CORE Ll’ L,, F, ITl’ IT2

L1 = first location (absolute.or symbolic)

Ly = second location (absolute or symbolic)

1-41

MC 63-4

F = this field designates the format of the output and may be
coded as follows:

Format Code

[42]

Symbolic instruction
Fixed-point number
Floating-point number
Octal integer

Hollerith BCD information

Variable

< @ O = X

IT1 (or TII)—Indirect addressing and the tag information for the first
location.

IT2 (or T21)—Indirect addressing and the tag information for the second
location.

1.1.4.2 Information Macros

a) CORE Ll’ L2’ F, ITl’ ITz—execution of this macro reads out the
core memory block from the lower location (defined by L1 and ITl)
to the upper location (defined by L2 and IT2) in the specified format.
If the effective upper location is zero, the block of core memory from
the lower effective location to the top of core memory is read out. If
the effective upper location is nonzero, it must not be less than the
effective lower location.

b) PANEL (no variable field)—execution of this macro reads out the:
1) Accumulator and MQ—each in both octal and floating-point format.

2) Index Registers 1, 2 and 4—each in both octal and decimal.

3) Sense Indicators—as an octal number whose binary equivalent has
0's for indicators which are off and 1's for those which are on.

4) Sense Lights and Sense Switches—each a binary number, with 0's
for those which are off or up, and 1's for those which are on or
down, respectively.

5) Entry Keys—as an octal number.

1-42

MC 63-4

6) Accumulator Overflow, Divide Check, and Input/Output Check Indi-
cators—each either on or off.

1.1.4.3 Modal Macros

There are three modal macros with variable fields (USE, FORMAT, and
POINT) and three without (ON, OFF, and NUCASE). These macros set modes
for subsequently executed debugging macros.

a)

USE Al’ A2, A3, .

tions may be occupied by different programs at different times. Conse-
quently, if a programmer wants to read out certain locations to debug
his program, he may get the location symbols of a program other than
his. This situation becomes apparent when the CORE macro is used,
since it scans the lists of ORG's in the Dictionary table, —from the
last entry to the first—until it finds the first program containing the
locations sought. For example, suppose the following system of pro-
grams is compiled using ORG to designate the origin of each program:

e An—in large systems particular memory loca-

ORG 3584 3584—3996 (a)
ORG 4033 4033—5025 (b)
TCD 4650 4420—32000 (c)
ORG 4420 3000—3371 (d)
ORG 3000 30—3520 (e)
ORG 30 4033—8986 (f)
TCD 12785
ORG 4033
END 12785

When an ORG pseudo-instruction occurs after the start of the program
and causes the programs to be compiled with common locations, the
USE macro can be used. In the example, b, ¢, and f have common
locations as do d and e. If the programmer desired the contents of
location 4054 in program b, the instructions or commands referring

to that location (in symbolic or command format), and only a CORE
pseudo-instruction is used, CORE would: (a) scan the list of ORG's,
starting with the last entry f, (b) find that program f uses location 4054,
and (c) dump the symbols from program f instead of b.

1-43

MC 63-4

DECIMAL FIRST EXECUTION SECOND EXECUTION
LOCATIONS LOADING PHASE PHASE PHASE

1000

2000

3000

4000 F

5000

6000

7000

8000

9000

1-44

USE reorders the ORG list so that the table is searched in the order
indicated by the symbols in its variable field. The variable field should
contain at least one location symbol (any one) which is unique to the pro-
gram to be dumped. Therefore, if B is a location symbol in program b,
by using USE B, A, CORE would find b 4033-5025 as the last entry and
read out the correct information.

To give a more complete example, suppose that programs a and b are
used initially to call in, from tape, programs c, d, and e which consti-
tute a 'first execution phase." After this, program f is brought in from
tape and used with program d during a ""second execution phase" (see
illustration). For this example, let A, B, C, ..., F be location sym-
bols associated with programs a through f respectively; let location
symbol F1 = 5020, C1 = 5021 (in programs f and ¢ respectively); let

MC 63-4

location F2 = 4050; and let location 4054 contain "TRA 5022." Then by
using "USE C, E" prior to any output from the first phase and '""USE F,
D" prior to any output from the second phase, "CORE 4054, 4054, S"
given during the first phase will read out "F 2 + 4 TRA C1+ 1". How-
ever, if this CORE macro is given during the second phase, it will read
out "F2 + 4 TRA F1+ 2."

It is essential that the correct span governed by each ORG be recorded
in the Dictionary by associating a symbol with the last location prior

to each ORG, TCD, and END. If this is not done, the symbols of higher
origined programs (higher order core locations) or negative absolute
location numbers (rather than symbollic relative) will be associated
with the desired locations if they lie outside any recorded span.

If the USE macro is not used, or the desired location is outside the
section designated in the USE variable field, the ORG with the highest
numerical core location lower than the numeric address of the desig-
nated program will be assumed to be the effective ORG. If symbols
have been assigned to define the span of each ORG and no USE macro

is used, the following symbols will be attached to all outputs regard-
less of which phase is being executed at the time the section is read out.

Decimal Locations Symbols From Program
30—2999 (e)
2000—3583 (d)
3584—4032 ()
4033—4419 (f)
4420-—32000 (c)

Therefore, since programs a, ¢, and d each lie completely within one
of the above regions, correct symbols would be attached to dumps of
locations within those programs while programs e and f, which are
interrupted by origins of other programs, will not be dumped correctly.
Note that two or more sections origining at the same core location,
without a USE, will cause the symbols of the section physically appear-
ing last in the compilation to be employed. Thus, symbols of program
b could never be seen unless USE is given.

Since USE changes the original order of the Dictionary search and
remains effective until it is nullified by another USE, a "USE E" dur-
ing phase 1 in the example would dump the wrong locations during
phase 2 unless a '""USE D" were given. This is true even though pro-
gram d origins at a numerically higher location than program e and

1-45

MC 63-4

would have been read out correctly in phase 2 if no USE had been em-
ployed earlier.

The USE macro is assigned an alter number, appears on a compila-
tion listing, and occupies (2n + 3)10 locations where n is the number of

symbols specified in the variable field.

b) FORMAT Bl’ Fl’ B2, F2 ge oy Bn’ Fn—thls macro defines the format

code V. Words which have been compiled by a VFD pseudo-instruction,
or otherwise involve hetrogeneous format, are read out by information
macros which stipulate format code V. Therefore, V must be defined
by prior execution of the correct FORMAT macro. For example, if
locations B through B + 2 contain the octal words 004003040010,
764240000000, and 254560000000, respectively, the macros

FORMAT 6,0,15,X,25,X,12,H
CORE B,B+2,V

cause the first (leftmost) six bits of location B to be output as an octal
number, the next 15 bits as a fixed-point number, the next 25 bits
(containing to location B+1) as a fixed-point number, and the next 12
bits as Hollerith information. For Hollerith, the number of bits should
be a multiple of six.

¢) POINT N—this macro defines the position of the binary point within a
word to be read out in fixed-point format.

N is an integer from 0 to 35 which indicates the number of bits which
lie to the left of the binary point.

d) ON (no variable field)—this macro, prior to execution of OFF or
NUCASE, prints debugging information on-line and writes it on the
BCD output tape for peripheral printing.

e) OFF (no variable field)—this macro prior to execution of ON, writes
debugging information on the BCD output tape for off-line printing.
This is the normal condition which prevails prior to execution of any
ON macro and after NUCASE.

f) NUCASE (no variable field)—if a program remains in core memory
while it is repeatedly executed for different cases, as for example when
new data cards are read into a fixed area of core memory, the NUCASE
macro is used at the start of each case to reset the POINT and ON
modal macros to normal. It also resets all counts generated by count
type conditional macros to zero and reads out a case identification
number.

1-46

MC 63-4

1.1.4.4 Conditional Macros

a) WHEN—when the variable field conditions are satisfied, subsequent
information macros will be executed.

b) UNLESS—when the variable field conditions are not satisfied, subse-
quent information macros will be executed.

¢) AND—this macro connects conditional and information macros and
extends the power of the WHEN and UNLESS macros. For example,
it may be difficult to specify both upper and lower limits of a given
variable with one WHEN macro. However, if one limit is specified
by a leading WHEN macro, the other limit can be specified by a
following AND macro. When using the AND macro with a WHEN
macro, both conditions must be satisfied.

d) OR~—this macro connects a conditional and an information macro and
extends the power of the WHEN and UNLESS macros. Unlike the AND
macro, the OR macro permits the specification of more than one condi-
tion, any one of which permits the execution of subsequent information
macros.

e) EVERY N-this macro specified the output increment for successive
passes through a program loop. Its variable field consists of an integer
N which allows a succeeding information macro to be executed the
firsttime and, subsequently, every Nth pass through a program loop.

f) Variable Fields of Conditional Macros—all conditional macros except
EVERY can use the following general format for their variable fields:

Ll’R’ L2,IT1,IT2

The relation subfield R is coded in one of the following ways:

R Code Meaning Comparison Employed by (DB)
L Less than CAS
E Equals CAS
G Greater than CAS
LL Logically less than LAS
LE Logically equals LAS (redundant to E)
LG Logically greater than LAS

The other subfields involve some additional conventions peculiar to the
conditional macros.

1-47

MC 63-4

1-48

The rules governing use of Ll’ L2’ IT1 and IT2 are similar but not

identical to those governing the CORE macro. The following rules
govern the use of terms in the variable field (assume that OP is a
WHEN, OR, UNLESS, or AND macro):

1)

2)

3)

4)

Case 1; OP (Ll):

(a) When L1 is zero or blank, the macro is meaningless.

(b) When L, is1 through 7, the contents of XR 1, 2 or 4 or their

result is specified.
(c) When L1 is greater than 7, a core storage cell is specified.

(NOTE: The above explanation is true if and only if at least one
other subfield in the variable field is expressed. Otherwise, this
form of the macro expresses a count type condition, for example,
WHEN N, where N may be any number. See programming ex-
amples d, e and f.)

Case 2; OP Ll,R:

R expresses a relationship between L, and the term that follows,

e.g., L1,E, Ly (L equals Lo).

1

(2) All rules of Case 1 for L1 apply.

(b) R must be one of the six symbols established for the desired
relationship.

(c¢) Since L2 is not expressed, the relationship specified is
between L; and zero.

Case 3; OP Ll’ R, Lzz
(a) All rules of Case 1 apply to both L1 and L2.
(b) R must be one of the accepted six symbols.

Case 4; OP Ll’ R, L2,IT1:

(a) IfIis written anywhere in the fourth term, L1 is indirectly
addressed.

(b) L1 is not inferred as an XR but is always a core storage loca-
tion, regardless of magnitude.

1.1.4.5

a)

b)

c)

d)

e)

MC 63-4

(c) If L1 is blank, it is regarded as a tagged address of zero.

5) Case 5; OP,Ll,R,Lz,ITl,ITZ:
All rules governing L1 apply to both L1 and L2 using IT2 as address
modification specification for Lo.

Programming Examples of Debugging Macros
A STO X

CORE
B CLA Y

After execution of STO X, all of core storage is read out on BCD tape
in addition to the panel information and, immediately following, control
is returned to CLA Y.

Given: L50 is the location of 50

WHEN 4,G, L50
CORE

If the contents of XR4 is equal to or less than L50, core memory is not
read out; only when the contents of XR 4 is greater than 50 is core
memory read out.

Given: Location 4 contains PZE 888; XR 2 equals 1

UNLESS 4, L, 2, I
OFF

If the contents of LOC 888 is greater than zero, the subsequent output
is off-line.

WHEN 8 (count type condition)
CORE 800, 800, X

If this pair is inserted in a program loop for the first seven executions
of WHEN, CORE is inoperative; following the eighth execution of WHEN,
CORE becomes operative.

UNLESS 8 (count type condition)

POINT 18
CORE 800, 800, X

1-49

MC 63-4

f)

g)

h)

1)

k)

1-50

If this sequence has been inserted in a program, the number of loca-
tion 800 is a fixed-point integer, properly read out until eight outputs
have occurred. Thereafter, the sequence is inoperative.

WHEN 3 (count type condition)
UNLESS 3 (count type condition)
CORE A, A

If this sequence has been inserted in a program loop, the CORE macro
becomes inoperative on the first and second passes, memory is read
out on the third, fourth and fifth passes, and all subsequent passes are
inoperative.

Given: X is to be read out when it lies between 50 and 70. 50,X and
70 are located at 150, LX and L70, respectively.

The macro program to give proper output can be written:

WHEN L50, L, LX
AND IX,L,L70
CORE ILX,LX,X

Using the given locations in example ''g'" to output X when it is less than
50 or greater than 70, the following macro is used:

UNLESS L50,L, LX
AND 1X,L,L70
CORE IX,IX,X

Given: X is to be read out when X2 2 100.X,10 and -10 are located at
ILX,L10 and LM10, respectively. The coding is:

WHEN LX,L,LM10
OR LX,G,L10
CORE IX,1X,X

Given: The first 50 non-negative values of X in a loop are to be read
out. The coding is:

UNLESS 1IX, L, 0
OR 50 (count type condition)
CORE IX,IX,X

Here the UNLESS macro is associated with a count of outputs.

Given: X,Y and Z are located at LX, LY and LZ, respectively. X is
to be read out the first 50 times any of the following three conditions
are satisfied:

X exceeds Y and XR 4
X exceeds XR2
X exceeds Z and XR 4

MC 63-4

The coding is:

WHEN IX,G,LY

OR IX,G, LZ
AND IX,G, 4
OR IX,G,2
UNLESS 50

CORE LX,1X,X

(For a detailed explanation of the associative and commutative laws
governing this type of sequence see page 29, Part 3, of the Share 709
SOS Manual.)

1.1.5 SOS MONITOR

The Monitor is a supervisory program written to control the processing of
job decks through the computer. A job deck consists of a program deck and its
associated control cards which designate the operation to be performed.

The control cards direct the Monitor to perform any or all of the following:

a)
b)

c)

d)

e)

Compile a program (listing and squoze deck as output).
Modify and load a squoze deck for execution.

Modify and punch a squoze deck to punch a clean (no modifications)
squoze deck.

Produce a listing of a squoze deck with or without modifications.

Permit the use of debugging macros.

1.1.5.1 System Operation: Input Deck

When using the SOS system for an assembly, a debugging run, or an execu-
tion run, the first card of each job deck is a JOB card. The alphabetic charac-
ters J, O, and B are punched in columns 8-10 of the card. Also punched in
columns 16-27 of the card are the name of the program and the programmer's
name or initials to enable the operator to separate and return the results.

Immediately following the JOB card, a DATE card may be inserted. (DATE
punched in columns 8-11 and six Hollerith digits in columns 16-21 for the month -
day - year.) The DATE card will override a date entered in the MQ-keys on the

caonsole.

The date entered either via the keys or a DATE card will appear on

1-51

MC 63-4

every page of a compilation or punch-squoze listing. It will also appear on the
first page of the output for all types of jobs.

Cards with columns 8-13 blank, placed between the JOB and succeeding
cards, will be printed both on-line and off-line. The variable field of these
cards might contain instructions to the operator or other remarks.

The input deck consists of any sequence of job decks, followed by a card
punched PAUSE in columns 8-12. Job decks include the following possible
categories:

a) Compilation Job Decks

1) Card punched JOB in columns 8-10 with the name of the program
and the programmer (or his initials) in columns 16-27. Columns
11-15 must be blank.

2) Card punched CPL in columns 8-10 for column binary, or CPLRB
in columns 8-12 for row binary output.

3) At least two remark cards, one with the name of the program and
one with the name of the programmer.

4) Symbolic program deck from ORG to END card.

5) Blank card
6) PAUSE card
Non-modified, column or row binary squoze decks may be inserted in
the symbolic deck if preceded immediately by a SQZ symbolic card.
For column binary, SQZ is punched in columns 8-10; for row binary,
SQZDbRB is punched in columns 8-13. The squoze decks incorporated
in the symbolic deck must be complete.

b) LS—List Job Deck
1) JOB card (as in a, 1 above)
2) Cards punched LS in columns 8 and 9
3) Squoze deck without modification

4) Blank card

5) PAUSE card

1-52

MC 63-4

c) Execution Job Deck
1) JOB card
2) Card punched LG in columns 8 and 9
3) Squoze deck*
4) Blank card
5) Any number of data sentence decks**
6) Card punched GO in columns 8 and 9
7) PAUSE card
The card sequence with a squoze deck is of major importance; manual
rearranging should be avoided. When no modification is desired, there
is no change required in the squoze deck; it should be fed into the card
reader exactly as produced in the card punch.
d) List Squoze Deck
This job deck gives a dump-type listing of the squoze deck with modi-

fications. The listing does not contain comments. It looks like a dump
using the CORE macro with the symbolic format specified.

1) JOB card
2) Card punched LG in columns 8 and 9

* If modifications are to be added, they areto be inserted as shown below:

Original Squoze Modification Deck
Miscellaneous cards preceding blank {1. Card punched MOD in columns 8-10
- 2. Modification cards
Blank card 3. Card punched ENDMOD in columns 8-13

Remainder of squoze deck

** Data sentence decks are composed as follows:

1. Card punched DS1 in columns 8-10
2. Data sentence decks
3. Blank card

Data sentence decks may be used to provide for input data during the debugging
of programs. Additional information concerning DS1 cards is found in subsec-

tion 1.1.5.3.

1-53

MC 63-4

f)

g)

h)

1)
NOTE:

1-54

3) Squoze deck with modifications

4) Blank card

5) Card punched LIST in columns 8-11
6) PAUSE card

This type of deck must be used if there are modifications.
PS—Punch New Squoze Deck

1) JOB card

2) Card punched PS in columns 8 and 9
3) Squoze deck with modifications

4) Blank card

5) PAUSE card

PA—Punch Absolute Binary

The following job deck causes the squoze deck to be decoded and abso-
lute binary cards to be punched according to SOS format.

1) JOB card

2) Cards punched PA in columns 8 and 9

3) Squoze deck with or without modifications

4) Blank card

5) PAUSE card

Compile and Execute

Punch New Squoze Deck and Execute

List Squoze and Execute Deck

If the input squoze deck is in row binary for an LG, PA, PS or LS run,
"RB" must be punched in columns 16-17 of the LG, PA, PS or LS card.
(Leave these columns blank for a columnar binary input deck.) If the
output deck for a PS or PA run is to be row binary, '"RB'" must be

punched in columns 18-19 of the PS or PA card. (Leave columns blank
for a columnar binary output deck.)

1.1.5.2 Effect of Control Card

MC 63-4

Control Card

System Action Caused

Visible Results

JOB

CPLRB

CPL

PS

LS

LG

Initializes the Monitor and causes
it to read next card

Calls in the Compiler and trans-
fers control to the Compiler.
The Compiler compiles the pro-
gram, gives an error list and
punches a squoze deck. Control
is then transferred to the Moni-
tor, which reads in Modify and
Load to obtain a Modify and
Load error list and a program
listing

Same as for CPLRB

Calls in Modify and Load,
punches a new squoze deck
and gives a program listing.
May be used with or without
modifications. MOD and END
MOD cards must be used even
if no modifications are present

Calls in Modify and Load and
gives a listing. No modifica-
tions are permitted

Calls in Modify and Load,
transfers control to Modify

and L.oad, decodes squoze and
writes absolute program on Bl.
At end of loading, it transfers
control to Monitor to read next
control card. Modifications are
permitted

Prints JOB and remafks
from JOB card variable
field on-line

Prints CPLRB on-line
and off-line. Pass SYSTAP
to Cl1 and C2. When C2 is
in, the system tape re-
winds., Prints error list
on-line or off-line; punches
squoze on-line or off-line
in row binary

Same as for CPLRB, ex-
cept the squoze deck is
punched in column binary

Prints PS on-line and off-
line. Punches new squoze
on-line or off-line. Gives
new program listing on-
line or off-line

Prints LS on-line and off-
line. Gives program list-
ing on-line or off-line

Prints LG on-line and off-
line

1-55

MC 63-4

Control Card

System Action Caused

Visible Results

PA

GO

LIST

PAUSE

Calls in Modify and Load, decodes
squoze and writes absolute pro-
gram on Bl; then punches abso~
lute binary. Mods are permitted

Reads SNAP (the DB1 program)
into core memory below 5670g;
clears memory from 5670g to
0; loads program from Bl until
a transfer card record is read;
then transfers control to object
card program

Reads SNAP (DB1) into core
memory below 5670g; clears
memory from 5670g to 0; loads
program from Bl until a trans-
fer card record is read; ex-
ecutes core dump from 5670g
to 0; then transfers control to
Monitor to read next control
card

Halts Monitor and allows the pro-
gram to continue without rewind-
ing all tapes. Press START to
read next control card

Prints PA on-line and off-
line. Punches absolute

Prints GO on-line and off-

line

Prints LIST on-line and
off-line

Prints PAUSE on-line and
off-line

| The Mercury version of SOS does not permit use of another SOS control card,
the control card STOP, which in the standard SOS system rewinds all system
tapes and halts the computer.

1-56

MC 63-4

1.1.5.3 Specifications of the Data Sentence Program

A data sentence is defined to include an absolute decimal location giving the
initial loading address; this is terminated by an equal sign (=) which is followed
by the data. Consecutive words of data are separated by commas, and the end
of the sentence is indicated by the marker (*); for example, 7083 = -52, 32.
1E5,39.1B6* is a data sentence which loads three numbers—integer, floating
and fixed numbers—into location 7083 and the two locations following.

The normal sentence data is floating-point data, fixed-point data and deci-
mal integers which are expressed according to regular SCAT rules and which
may follow each other arbitrarily.

To introduce octal data, the letter O is punched with the octal numbers en-
closed within parentheses; for example, 7083 = -52,32. 1E5,39. O(-7,7263),

509E20*. This sentence loads three decimals, two octals, and one decimal
beginning at 7083.

The remaining rules of syntax are:

a) The card is used from column 1 to column 72; punching is continuous.

b) A sentence may start in any card column and extend to the end-of-
sentence marker. It may extend beyond a card; more than one sentence

may appear on a card.

c) Punching on a card must end with a comma or with an end-of-sentence
marker. If a blank then follows, the remainder of the card is ignored.

d) The last sentence of a data block must end with a ($) instead of (*) and
should be followed by a symbolic expression. Transfer to this location
is made after loading the data block; for example:

Card 1-A = 7192 = 5.1E3,60.12,301.2%
Card 2-B = 7195 = 70.1,0(-177),70,1B7$C

These two cards comprise a data block which loads as specified and
transfers to location C.

Two types of errors may occur during conversion:

a) Overflow/Underflow—normal zero is stored; conversion of next field
continues.

b) Mispunch—when an illegal character is encountered, normal zero is
stored and processing is continued for the next field.

1-57

MC 63-4

Error messages indicating column number and record are given.

If either TCD's or DS1's are used, the program must anticipate the logical
record arrangement and call program and data blocks after logical record 1 from
tape into core memory by use of calling sequences of the form:

TSX 82, 4
PZEA,, B
Bad data return

A is the number of the desired logical record (program file). A = 0 means to
read the logical record with the number that is one greater than the last one
read. A nonzero means B is the location to which the Monitor returns after
reading. B = 0 causes return to the location specified by the TCD, END, or

$ card. (Each TCD and END card terminates one program file. The first such
file is number 1.)

1-58

MC 63-4

1.2 SOS MODIFIED FOR MERCURY

1.2.1 MERCURY CHANGES TO SOS

1.2.1.1 Monitor

The Mercury SOS System tape contains the '"32K New York IBMonitor, "
with the following changes:

a)

b)

d)

The Mercury SOS Monitor initializes core storage locations above
30001 o to zeroes at the start of each job. Share SOS initializes by

inserting an STR instruction (operation code: —10008) in each location
above 300010.

For floating-point overflow and underflow, SOS Mercury prints off-line
the location of the instruction which causes the overflow or underflow.

SOS Mercury overflow sets bits 1 through 35 of the responsible register
(AC or MQ) to 1's, but the sign remains unchanged and the program con-
tinues. Share dumps when an overflow occurs. For both Share and Mer-
cury, underflow causes the responsible register (AC or MQ) to be cleared,
i.e., set to+ 0, and the program continues.

A program may be terminated by transferring to SYSTEM or SYSERR
without defining these symbols in the program. This obviates the
necessity of returning to the SOS Monitor with a TRA 10 or 14, 110 or
114, or any other absolute location subject to change. SYSTEM gets

the snaps taken by the job and then initializes for the next job. SYSERR
gives a symbolic dump (in the format from the compilation listing) from
SYSORG to the top of memory and then transfers to SYSTEM. A third
symbol, SYSTRA, which immediately initializes for the next job, can be
used.

Three other SOS system symbols are available; these are primarily
used for interjob communication in the dual-compilation scheme. After
a job assumes control at execution time, it can change the contents of
these locations to accomplish a change in the way SOS processes the
next job.

Normal
Symbol Octal Contents Purpose
SYSORG 5670 The origin value assigned by SOS to

each program file unless the program
specifies another by means of an
ORG card. Also, the starting loca-
tion of all core dumps taken by the
system

1-59

MC 634

g)

h)

1-60

Normal
Symbol Octal Contents Purpose
SYSMIT 2201 Mediary Input Tape. Contains the
program in binary and various SOS
information such as the dictionary
of program symbols
SYSMOT 2202 Mediary Output Tape. Contains the

debugging information taken during
execution, in binary

The table of names and numbers of the 21 subroutines on the Mercury
SOS Library Tape appears in the Mercury SOS Monitor. The Share
Monitor provides for these items but does not include them since they
are functions of each installation.

An on-line punching operation (CPL, PS, PA) will cause a JOB card to
be punched on-line ahead of the deck. The off-line punching operations
(CPL, PS, or PA), with SSW#6 up, will not punch a JOB card ahead of
the deck on SYSPPT.

To permit the above changes to be made without affecting the corre-
spondence of alter numbers and locations between the Mercury and
Share systems, some instructions have been moved and some remarks
inserted.

The PAUSE halt is 1738.

Additional SOS symbols available in Monitor are:

Program Symbol Comments
SYS2PR Prints message on-line and on A2.
TSX SYS2PR

PZE A,,B

where A is the first location of the BCI message
and B is the number of words in the message
(maximum 12 for on-line)

SYSBAT Decrement receives C tape drive number for a
batched copy of Bl

SYSCPL Area in monitor not used during LG
SYSFGO Area modified to stack edited dictionaries
SYSFIL Transfer location to space to dictionary on Bl.

Program Symbol

SYSFLO

SYSPRM

SYSPRT

SYSTLD

SYSXCD

6610

6710

7010

7110

721 0

MC 63-4

Comments
(See commentary on floating origin)

Subroutine to reset memory

TSX SYSPRM,4

PZE A,,B

Reset word

Memory from A to B inclusive is reset to con-
tents of Reset word.

Subroutine to print a line or write a BCD record
on A2,
TSX SYSPRT,4

PFX A,,B
Redundancy return
EOT Return

PFX is PZE for A2, MZE for printer. A is the
location of the BCD characters. B is the number
of words (maximum of 12 for printer)

SOS Tape Loader (A1)

TSX SYSTLD,4

PFX A,,T

If PFX is PZE, tape is loaded; MZE, tfape is
positioned in front of first record of requested
file.

A is communication cell containing call number
T is the return address. If T is zero, return
is specified by loaded file

Continues SOS without picking up snaps

Contains SOS tape number (normally 12018)

Contains Library tape number (normally 12048)

Contains input tape number (normally 12038)

Contains output tape number (normally 12028)

Contains squoze or binary tape number (nor-
mally 1205 8).

1-61

MC 634

Program Symbol Comments

761 0 Redundancy correction routine. Attempts to
write 25 times or read 10 times before it stops
running
TSX 76,4
PFX A,,D

Error return

A is the address of first I/O command in string.
D is the unit (such as 1206 or 1226 for A6 in
BCD or binary, respectively)

XR2 contains the record count

PFX is PON for read, PTW for write end of
file, PTH for write

821 0 Mediary input tape (Bl Job Tape) loader
TSX 82,4
PZE A,,B

Bad data return

where A is file call number; if zero, next file is
loaded

B is normal return address; if zero, tape
specifies return

1.2.1.2 Compiler

a) Provisions were made to incorporate programmer macros into the
Mercury SOS as system macros (see subsection 1.2.3). Core storage
was made available for these system macros by removing certain
instructions not used in Mercury (the instructions referring to data
channels E, F, G, and H, the magnetic drum, and the cathode ray
tube). The Mercury SOS tape does not presently include the Mercury
programmer macros.

b) SCAT was changed to recognize the machine instruction PSLF (present
sense lines, channel F), which activates the subchannels of the Data
Communications Channel (DCC).

¢) The maximum dictionary size was reduced from 8192 entries in the
Share system to 8000 for Mercury.

d) The following 65K instructions have been added: TIA, TIB, SEA, SEB,
IFT, and EFT.

e) 7094 instructions have been added.

1-62

f)

g)

h)

1.2,1.

d)

f)

g)
h)

MC 63-4

The highest location from the previous job is passed on to the following
job. The first job must be preceded by a FIELD card. The highest
location may be picked up in the following job by placing a BSS card
after a TCD card with no intervening ORG card. The BSS should have
a location symbol for reference purposes.

All 6-letter symbols beginning with SYS are passed on to suceessive
jobs when the first job has been preceded by a FIELD card. A maxi-
mum of 600 such symbols may be passed on. If a passed-on symbol is
used as a location in a job, the location symbol overrides the passed-
on symbol for that job only.

ORG, BSS, BES, EQU, and SYN can select the highest value of several
choices. For example, ORG A=B=C. If B is the highest value, the
ORG occurs at B. Address fields may be complex, such as A+B=C/D=
D+F. (With these instructions, the equal sign is part of the format and
does not denote equality.)

Modify and Load

The PSLF instruction was added to the decode and list files (see b
under "Compiler. "

Deletions similar to those in Compiler were made from SOS to reserve
storage for additional Mercury programmer macros.

The decode and lister files were also altered to compile squoze cards
using SQZ or SQZ RB. SQZ and LBR have a better chance of succeeding
if they occur near the start of the program.

The Modify and Load supervisory controller and symbol assigner files
were altered to use certain symbols internal to SOS. These are men-
tioned under 1.2.1.1, items ¢ and d.

LBR cards may be altered out of a program at Modify and Load time;
however, there is presently no way to alter in a routine from the
Library tape.

The maximum number of TCD cards acceptable has been raised from
50 to 500.

A cardof theform A BSS A is now acceptable.
Modifications were made which enable SOS to assign origins other than

SYSORG to program files. A TCD followed by a BSS 1 (with no
intervening symbols or ORG cards) will cause the origin of the BSS to

1-63

MC 634

i)

)
k)

1

1.2.1.4

b)

c)

d)

1-64

be assigned from a table starting at location SYSFLO in Monitor. The
maximum number of these origins now available is 28. Additional ones
would be assigned from SYSORG. The table must be initialized by one
job with desired origins to be assigned in succeeding jobs. The table
would appear as:

PZE A,,B
PZE c,D
PZE E

if five starting locations were desired by this method. This feature is
primarily applicable to the dual-compilation scheme used for the Mer-

cury Programming System. However, the operator should recall SOS
from tape after using this feature.

The following 65K instructions have been added: TIA, TIB, SEA, SEB,
IFT, and EFT.

7094 instructions have been added.

Highest location pass-on, symbol pass-on, and highest value selected
in principal pseudo-ops have been incorporated. See subsection 1.2.1.2
f), g), and h) for a discussion of these features.)

If a symbol occurs after a wrap around, the new SOS tape will announce
""Core Wrap Around'" once for each instance of wrap around.

Debug

The following 65K instructions have been added: TIA, TIB, SEA, SEB,
IFT, and EFT.

7094 instructions have been added.

A FIELD card prevents the SNAP routine from being loaded, therefore,
the programmer may not use CORE, PANEL, etc., unless he makes
provisions to load SNAP.

Snaps may be taken in an intermixed fashion from different jobs. Pre-
edited dictionaries must be on A10 and the first pre-edited dictionary
must be loaded before calling SNAPTRAN. B2 tagging records identify
which dictionary is to be used. The tagging record consists of one
word in the following format: PZE JOB#,,21.

If the program has left multiple-tag modes, the panels will be all of
seven index registers.

MC 63-4

1.2.1.5 Input/Output

There are no deviations from the Share Input/Output section.

1.2.2 MERCURY SOS TAPE FEATURES

The following paragraphs present a partial listing of the features of the
Mercury SOS tape:

a)

b)

c)

d)

The JOB card is reproduced at the start of all decks punched during
CPL, PS and PA runs. If the no-punch option is exercised, the JOB
card is represented on tape as one binary record. (A 1 appears in
column 1 to eject paper on the on-line printer for each new job.) The
JOB card should be removed before sequencing the deck but may be
used as the first card in the deck setup for future execution runs.

LBR cards need not appear in the symbolic deck in the same order as
the routines appear on the Library tape.

The date may be inserted into a CPL or PS listing using the control
card, DATE, and the month/day/year in columns 16-21, as '"bbbbbbb
DATE bbbb 121560." The date can also be entered manually on the
console keys in the same manner; however, the DATE card overrules
the keys. The DATE card should immediately follow the JOB card.

The "rescue' operation saves any debug macro output which may have
been written on B2 before a program came to an unexpected stop or
loop. The rescue operation procedures are as follows:

1) Rewind Al
2) Depress sense switch #4
3) Press LOAD TAPE

A memory dump from 308410 to 327671 0 is taken first. (To skip the

dump, press CLEAR before pressing LOAD TAPE.) TRYING TO
RECOVER SNAPS AFTER PROGRAM SCRAMBLED MEMORY is
printed on-line.

Column binary input and output (squoze or absolute) cards are the
normal modes of operation and therefore may be processed on-line.
Row binary squoze cards must be read on-line, and the appropriate
control card must have RB in columns 16 and 17. The control card,
CPLRB, must be used for row binary squoze output from a compila-
tion. For row binary (squoze or absolute) output from an execution,

1-65

MC 63-4
RB must be in columns 18 and 19 of the appropriate control card (LG,
PA, PS or LS).
f) A CORE macro consolidates large groups of consecutive identical words;
the message, WORDS OFOMITTED, appears instead of the
individual locations (formerly this was true only for consecutive zeroes).

Symbols attached to the omitted locations are not used.

g) The EJECT macro is inoperative at the top of a page unless two or
more EJECT's occur in succession.

h) Symbolic cards can be used to provide comments both on-and off-line
if columns 8-13 are blank and the cards are inserted between the JOB
card\and the next control card. By this means, a message can be
given to the operator without using machine instructions.

i) One computer run may combine a CPL and GO, or PS and GO, or LS
and GO job. The deck setup for this is:

1) JOB card
2) DATE and comments cards (both optional)
3) CPL, PS or LS control card
4) Symbolic or squoze deck
5) Blank card
6) GO card
7) PAUSE card
j) The variable fields of DETAIL and SPACE are interpreted.

k) A tape bad-spot routine has been added to all sections of SOS and should
reduce tape failures.

1) A squoze deck to be listed using LS may now contain mods (except
column binary on-line). The new date appears on the listing, and the
job is treated as PS.

m) A PS run with a squoze deck without mods may be made. The MOD and
ENDMOD cards may be omitted, but an error message is printed and
the job is treated as LS.

n) Two or more tapes may be used as input to the compiler for one job.
This splitting is accomplished by placing an ENDTAP card on each

1-66

o)

MC 63-4

incomplete tape except the last. When encountered by the compiler,
the ENDTAP card causes the following message to be printed on-line:
END OF SYSPIT. MOUNT THE NEXT SYSPIT AND PRESS START.

Commentary at the start of the program can now be deleted by using
ERASE. ERASE (MACRO) only removes the macro skeleton from a
punched squoze deck. It has no effect on the macro expansions in the
program.

1.2.3 MERCURY SOS LIMITATIONS

The following is a list of the Mercury SOS Systems' limitations.

a)

b)

c)

d)

f)

g)

A program should not origin below 3000, . and cannot origin at zero.

10
The following insertions are inoperative at Modify and Load time:

DUP, LBR, SQZ, EXEMPT, Extended Range Instructions programmer
macros unless they are redefined, and ETC after a VFD. HEAD may
be altered in and out on non-PS runs (as well as PS runs), except
column binary on-line. This requires an A5 and makes a listing since
it causes a PS operation. All 7094 instructions may be inserted ex-
cept indirectly addressed I/O commands. (For example, IORP* A, ,B
would have to be altered in as IORP A,4, B. The resulting SOS error
indication should be ignored.)

SYN, EQU, or BOOL is omitted if the location symbol or variable field
is missing.

Principal pseudo-operations* may not be modified with, nor included in,
the range of a CHANGE.

If a BSS or BES pseudo-operation has both an associated symbol and a
debugging format code, the latter is attached to the symbol associated:
with the BSS or BES. If either a BSS or BES has no associated symbol,
the debugging format code, if present, is ignored. If a BSS or BES
has an associated symbol but no debugging format code, the code is
attached to the symbol, becomes the prevailing code for compilation
and will be octal for Modify and Load.

Depressing sense switch 3 causes the Modify and Load and Compiler
errors to be printed on-line. However, during GO time, portions of
the debug macro output may be selected for on-line printing by toggling
sense switch 3.

Any insertion which is attempted in the middle or at the end of a block

of remarks cards or listing pseudo-operations is always made before
the remarks or pseudo-operations.

1-67

MC 63-4

h) If an MSE or PSE with a blank variable field is inserted, it is listed
incorrectly.

i) I an illegal subfield exists in the variable field of a DEC, a zero is
inserted for that subfield and an error message is printed, but subse-
quent fields may be dropped or improperly converted.

j) Principal pseudo-operations* cannot occur within the range of a DUP.

k) There is a limit to the number of modifications which may be made for
an execution run. The number of permissible modifications is a func-
tion of the core size, length of program, the type of modification, and
the number and length of insertions; where '""mods" is the sum of
ALTER's, CHANGE's, ERASE's, ASSIGN's, dictionary, introduction,
and footnote entries. Thus, there is no practical reason for deter-
mining the numerical value of this limit. If the phrase MODIFICA-
TIONS EXCEED LIMITS appears after the ENDMOD card, the number
of changes should be condensed or a recompilation made. The SUMARY
program is provided to determine the nearness of the modification limit,
and to advise on the recompilation schedule.

1) A VFD with its ETC's may not specify more than 66 subfields or gen-
erate more than 50 words.

m) Squoze decks (tapes) prepared from CPL or PS runs using a current
SOS tape cannot be executed using an earlier version of the SOS tape.

n) The limitations of programmer macros are:
1) The name of a macro may not contain any numeric characters.

2) The macro definition does not appear in the Compiler listing;
however, using a DETAIL prior to calling the macro causes all
the generated instructions to be listed.

3) The macros are not available at Modify and Load time. To insert
a macro, it must be redefined in the modification packet immedi-
ately following the MOD card and before any ALTER's or
CHANGE's.

4) The elements in the variable field of macros appearing within pro-
grammer macros are prefixed by a plus sign.

*BES, BOOL, BSS, END, EQU, HEAD, ORG, SYN, and TCD are the principal
pseudo-operations,

1-68

MC 63-4

5) ERASE QXX (where QXX is a macro name) is not operative.

6) No programmer macro may contain an operation of the form A$B
(where A is a parameter of the macro).

7) The maximum number of programmer macros which can be defined
by Modify and Load is 20.

8) A single macro definition may not employ more than 32 parameters.

1.2.4 INCORPORATION OF MERCURY PROGRAMMER MACROS INTO SOS
AS SYSTEM MACROS

The Mercury SOS System tape does not include any of the programmer
macros of the Mercury Programming System. The definition of each macro
must, therefore, be inserted as modifications during each execution run if any
CHANGE or ALTER inserts a use of that macro. However, it is possible to
incorporate these macros into SOS'so they can be available (as are CORE and
PANEL) without redefinition at Modify and Load time.

SOS macros may be defined either by skeletons* or generators. ** The
definition of a macro by the skeleton is preferable to definition by a generator,
since the former requires less coding and is the method used to define program-
mer macros. A generator would have to be used for macros which do not adhere
to the restrictions placed on programmer macros (for example, a macro such
as BEGIN, which does not always generate the same number of instructions).
The discussion which follows is confined to macros defined by skeletons. Addi-
tional information is available through SHARE.

*The ''skeleton" is a series of octal data words which describes the generated
instructions according to a formula.

**A macro '"generator" is a program added to the C1 and MO files of SOS to pro-
duce, in BCD, the instructions of a macro. When the generator receives con-
trol, the identity of the macro has been determined and the starting column
and number of characters in the parameters have been tabulated. After pro-
ducing each instruction, the generator relinquishes control to permit encoding
of the instruction as if it were symbolic input. When control returns after the
processing of the last generated instruction, the generator exits by a trans-
fer to the basic routine to resume processing symbolic input.

1-69

MC 63-4

The first step in incorporating a programmer macro is to compile the
symbolic definition of the macro. The deck for this computer pass might con-
sist of the following cards:

JOB
CPLRB
QXSUM MACRO A,B,C
CLA A
B ADD 3004
C 3010
END
START QXSUM D, E,STO
TRA SYSERR
D DEC 1
END START
blank card
PAUSE

The resulting row binary squoze deck includes a macro name table as the
card preceding the blank card, and the macro skeleton table as the card(s) im-
mediately following the blank card within the squoze deck. For each macro that
is compiled (one, in the above example), the macro name table contains two
adjacent words of information:

Word 1-NAMEOQO: the macro name, left-justified, to provide six
characters.

Word 2—Address: relative position of the first word of the skeleton in the
skeleton table (zero for the first skeleton).

Word 2—Decrement: number of words in the skeleton.

For each macro to be inserted, three modifications to the SCAT1 or C1
file of the SOS Compiler and three modifications to the MLMOD1 or MO file of
SOS Modify and Load are required:

a) BCI1l, NAME00O, where NAME consists of one to six alphabetical
characters, should be inserted in the tables whose origins are at
OPTBL in C1 and TOPCO + 1 in MO.

b) An information word, whose structure is given below, should be in-

serted in the tables which origin at FLAG in C1 and TOPAN + 1 in
MO.

1-70

MC 63-4

Cl Information Word

Bits Use

S, 5-11, 20 Available to the macro generator

13,4 0

2,19 1

12-17 Minimum number of parameters
which may be specified

18 0—macro defined by skeleton
l1—macro defined by generator

21-35 Location of skeleton or generator

MO Information Word
Bits Use

S-5 011 001

6-15, 17, 20 Available to the macro generator

16 0

19 1

18 0—macro defined by skeleton
l—-macro defined by generator

21-35 Location of generator or skeleton

¢) Octal data words (using the pseudo-operation, OCT, and the data from
the skeleton table in the squoze deck obtained above) for the macro
skeleton should be inserted after the remark MACRO SKELETONS FOR

SYSTEM MACROS in C1 and MO (at alter numbers 85438 and 73218,

respectively). The first octal word should be given the location symbol
specified in bits 21-35 of the information word described in b) above.

(NOTE: Reference to listings without modifications of the C1 and MO files
should be made to obtain the alter numbers for the above insertions.)

With modifications, the C1 and MO squoze decks must be punched absolute
to obtain absolute (row) binary decks using a control card with the following
format:

Column Punch
8-9 PA
18-19 RB

A punch squoze run is necessary to obtain a listing with modifications. The
new absolute binary decks are used to update the SOS System tape using the
IBWR2 program and the appropriate Hollerith cards preceding each binary deck.

1-71

MC 63-4

1.2,5 COMPONENTS OF THE MERCURY PROGRAMMING SYSTEM
The complete Mercury SOS Programming System consists of:

a) The Mercury SOS System tape which incorporates modifications from
New York through|SHARE Distribution Number 32 and various other
changes. (Individual files on this tape are listed in Table 1-1. Other
features of the tape are discussed in subsection 1.2.2,)

b) The Mercury Library and Regular Library tapes.

c) The New York SOS System tape which includes all sections exactly as
they have come from SHARE (through Distribution Number 32).

d) Two decks, each consisting of approximately 3000 absolute row binary
cards. One deck is used to write the Mercury System tape and the
other is used for the SHARE System tape.

e) Eachsystem (Mercury and SHARE) in column binary squoze cards with
appropriate modifications. Each deck contains approximately 10,000
squoze cards.

f) A folder of listings for the sections to the SOS System.

1.2.6 SHARE SYSTEM TAPE WRITER PROGRAM (IBWR1)

IBWRL1 is a self-loading program that accepts the SOS master cards in IBM
709/7094 binary format and produces an SOS System tape (Al).

1.2.6.1 Input Requirements

Input to IBWR1 consists of symbolic control cards and the binary programs
which comprise the SOS System. The cards are described in the order in which
they must be supplied as input:

a) Sequence Cards (SEQ punched in columns 8-10)—contain the system
file identification in columns 16-21. The order of these sequence cards
specifies the order in which the corresponding system files are to be
written on the SOS System tape—these cards must be arranged in the
exact order intended for the files on the tape, and SOS Monitor (file
identification, MON) must precede all other files on the SOS System
tape.

b) Program Deck (name card and program)—each name card is a preface
for, and must precede, the program it represents. The system file
identification (from columns 16-21 of the sequence card) is punched in

1-72

TABLE 1-1. INDIVIDUAL FILES, MERCURY SOS SYSTEM TAPE

MC 63-4

File | File | Sequence . Inclusive Number of Number
No. | Name Name Section Decimal Locations Locations of
in Core Storage Used Records
1 Tape Loader 1
2 MN MON Monitor 32767-1,8,10-1796 1791 12
3 M1 MLSUPR | Modify & Load | 28672-29573 902 19
4 MO | MLMOD! 22978-31678 8701 35
5 M3 MLMOD2 27617-31546 3930 15
6 M7 MLPCH1 29937-31616 2196 10
31667-32182
7 M7 MLPCH2 28672-31401 2731 10
8 M7 MLPCH3 31117-31626 510 4
9 M7 MLPCH4 30067-31571 1505 5
10 M7 MLPCH5 30998-32198 1211 6
n M4 MLASGN 28672-29790 noe 6
12 M5 MLDCOD 28160-31564 3405 13
13 Mé MLDERP 28672-29740 1069 9
14 M8 MLLIST 5400-10800 5401 45
15 M9 MLEROR 28672-29526 855 7
16 D1 SNP1 Debug 1798-2961 1164 8
17 D3 DDE 2000-2408 480 8
32618-32688
18 D2 SNP2 2000-5992 3993 19
19 C1 SCATI1 Compiler 2000-16752 15279+BSS 45
24770-25295
20 C2 SCAT2 2000-11998 9999+ C1 BSS 13
21 DA Ds1 Input/Output 9000-10449 1450 13
22 IN INTRAN 3000-8147 5148 25
23 oT OUTRAN 10500-14505 4006 18
24 ™ ™ 14500-15108 609 6
25 EOT File 1

1-73

MC 63-4

columns 9-13 of the name card. The program follows the name card
and is in absolute row binary format. Each name card, and correspond-
ing program, represents one file in the SOS System tape. The program
decks must be in order as designated by their related sequence cards.

¢) Blank Card—indicates to IBWR1 the termination of input. No input
cards may follow the blank card.
1.2.6.2 Output Requirements
Output from IBWR1 is the complete SOS System tape. (The composition,
by files, of the Mercury SOS System tape is illustrated in Table 1-1.)
1.2,6.3 Usage
a) Operator's Procedures:

1) Ready the on-line card reader with the IBWR1 program followed
by the SOS system input cards.

2) Ready a blank tape on Al.

3) Ready the on-line printer with the SHARE #2 board.

4) Press LOAD CARDS to load the IBWR1 program, IBWRI1 reads
in the SOS System input cards and writes the SOS System tape on
Al.

5) The program halts at 005728.

6) Press START to check the SOS System tape. The tape is reread
and checked for redundancy and valid checksum recording. An
on-line printout of file identifications and error indications, if
any, is furnished. Other on-line printouts include the total num-
ber of tape files written—excluding the bootstrap loader and the
end-of-tape files—the number of tape records, and any read/write
checks encountered.

7) The SOS System tape, Al, is rewound and the program comes to
a final halt at 010338.

b) Error Conditions—a complete list of program error stops is presented
in Table 1-2,

1-74

MC 63-4

TABLE 1-2. 1BWR1 PROGRAM STOPS

Octal .

Location Meaning and Procedure

00201 lllegal system file name punched into sequence card. Correct and start again.

00212 No sequence cards in system deck. Furnish same as required and start again.

00433 System deck binary program card contains error in checksum. If SS1 is up,
press START button to cause card-punched sum to be ignored (this does not
affect validity of subsequent checksum recordings on System tape if the card
in question is correctly punched in all other respects). If SS1 is down and
$S2 is up, reload card in question and press START to reread and recheck. If
$S2 isdown, reload entire subdeck (including related name card) containing
card in question to regenerate correct System tape file.

00522 System deck binary program card punched with incorrect word count (i.e., ex-
ceeding 27g). See 00433 stop regarding SS2 setting.

00533 System sequence cards and name cards in asynchronous order. Place cards
in order and restart.

00546 lllegal system name punched in name card. Correct and start again.

00563 Sequence card present for which no corresponding program exists in system

' deck. Eliminate sequence card or furnish program and restart.

00572 System tape has just been written and rewound. Press console START button
to initiate full System tape checking.

00612 Bad tape logic encountered during course of file recount procedure. Restart.
If this stop recurs, select different physical tape unit for Al.

00660 Five successive failures occurred in attempting to write a System tape record.
If SS1 is up, press START to write record as is. If SS1 isdown, press START
to attempt rereading of record five additional times.

00675 Bad tape logic encountered in attempting to pass over EOF mark foliowing
bootstrap file. See 00612 stop.

01004 Five successive failures in attempting to read System tape record. If SS1 is up,
press START to ignore error. 1fSS1 isdown, press START to reread record.

.01033 Final IBWR1 stop. System tape is on tape unit Al.
01041 Bad tape logic—EOF does not occur immediately following TCD (transfer

card) record. Restart from the beginning (possibly after having switched Al
to a different tape unit).

1-75

MC 63-4

1.2.7 SHARE SYSTEM TAPE EDITOR PROGRAM (IBWR2)

After the SOS System tape has been written by IBWR1, any or all of the files
of this tape may be edited and replaced by using the self-loading editing program,
IBWR2. This program may also be used to duplicate the SOS System Tape.
1.2.7.1 Input Requirements

Input to IBWR2 must be in the same format and have the same relative
order as the input to IBWR1: sequence cards, program decks (name card and
program), and a blank card as the last card. Each program represented by a
sequence card and a program deck replaces the program of the same name on
the SOS System tape.

The SOS System tape to be updated must be placed on tape unit Bl.

If IBWR2 is used to duplicate the SOS System tape, the only input other than
the SOS System tape on Bl consists of a blank card. This card is placed imme-
diately after the IBWR2 self-loading program deck.
1.2,7.2 Output Requirements

Output from IBWR2 is an updated (or duplicate) SOS System tape. The
order of files on the updated tape will be identical to the order on the input
tape.
1.2.7.3 Usage

a) Operator's Procedures:

1) Ready the old SOS System tape on Bl.

2) Ready a blank tape for output on Al.

3) Ready the IBWR2 program in the card reader.

4) Ready the input updated programs with at least one blank card
after the last program. Each updated program consists of its
appropriate name card, binary program cards, and associated

transfer card:

(a) If input is to be on-line, place the updated (row binary) cards
in the card reader behind IBWR2.

1-76

b)

MC 63-4

(b) If input is to be from tape, go card-to-tape with the updated

(columnar binary) cards. Place this tape on A3 and depress
sense switch 2.

5) Ready the on-line printer with either the Share #2 board or the
MOCKDONALD printer board.

6) Press LOAD CARDS.

7) The program comes to a final halt at 01430 with the updated (or
duplicated SOS System) tape rewound on Al.

Error Conditions—a complete listing of program error stops is pre-
sented in Table 1-3,

1-77

MC 63-4

TABLE 1-3. |BWR2 PROGRAM STOPS

Octal .

Location Meaning and Procedure

01045 Illegal system name punched in name card. Correct and start again.

01053 Program indicated on name card isnot on old SOS System tape. IBWR2 cannot
update program which does not exist on SOS System tape.

01064 A file identification number on the old System tape exceeds 32, 7671o. Start
again. |f stop recurs, switch B1 to another tape unit and try again. |If still
unsuccessful, the old System tape is probably no longer usable. A new System
tape should be written with IBWR1.

01067 File to be updated has been bypassed on old System tape. Check to ensure
that order of updated program decks corresponds to file order on old SOS Sys-
tem tape.

01244 709 binary card punched with incorrect checksum. Correct and start again.

01247 704 binary card punched with incorrect checksum. Correct and start again.

01324 704 binary card punched with bad word count, i.e., exceeding 26g. Correct
and start again.

01325 709 binary card punched with bad word count, i.e., exceeding 27g. Correct
and start again.

01430 Final IBWR2 stop. Updated SOS System tape rewound on Al.

01453 Read check on B1. If $56 is up, press START button to attempt to reread B1;
if SS6 is down, press START to continue, ignoring error.

01461 Write check on Al. If SS6 is up, press START button to rewrite and recheck;
if SS6 isdown, press START to continue, ignoring error.

01471 See stop location 01461

01477 See stop location 01461

01507 See stop location 01453

01515 See stop location 01461

01523 See stop location 01453

01532 See stop location 01453

01540 See stop location 01461

01546 See stop location 01453

01554 See stop location 01453

01562 See stop location 01453

01602 See stop location 01453

01616 Redundancy on A3 (SYSPIT). Start again. Persistent redundancy indicates
blank card does not follow input programs. Rewrite SYSPIT before repeating.

1-78

MC 63-4

1.2.8 CONSOLE OPERATION DATA FOR MERCURY SOS

SS1

SS2

SS3

SS4

SS5

SS6

Tape Unit Assignments; Equipment System Symbols

Unit

Al

A2

A3

A4

A5

Bl

B2

Reader

Printer

Punch
Up
Down
Up
Down
Up
Down
Up
Down
Up
Down

System Symbol

System Tape SYSTAP
Peripheral Output Tape SYSPOT
Peripheral Input Tape SYSPIT
Library Tape SYSLBR
Peripheral Punch SYSPPT
Mediary Input SYSMIT
Mediary Output SYSMOT
SYSCRD
SYSPRT
SYSPCH

Sense Switch Settings

Tape input
Card input

Not used

Print only control cards and error state-
ments on-line
On-line printing of everything

Compile or Execution run
""Rescue'" operation to take core dump and
capture SNAPS from B2

Normal mode
Suppress SYSPOT output during CPL

Punch off-line, columnar binary
Punch on-line, columnar or row binary,
as specified in control cards

1-79

MC 634

Program Stops

The following is a complete list of Mercury SOS program stops:

Octal Locations Meaning
00173 PAUSE card.
01644 End-of-file (EOF) on tape unit A3 or on-line card
reader.
01746 End-of-tape (EOT) on tape unit A2.
02420 End-of-tape (EOT) on tape unit A5.
22422 Tape unit A2 is full and rewinding; set new tape

on A2 and press START.

77202 Redundancy check in reading or writing during
modifications punch squoze, or decoding. To
determine unit failing:

1) Display the sense indicators.

2) Subtract the decrement of the indicator

contents from 772738.

3) Display the resulting location.
4) The contents of the address of the resulting

location is the octal code for the unit failing
(1201 is for Al, etc.).

5) Push START to accept the last attempt and
continue.

1-80

MC 63-4

1.3 SOS LIBRARY TAPE

The SOS Library tape consists of utility computational subroutines which
are, in effect, programming aids to reduce the amount of programmer coding
needed to include a specific mathematical process in a program.

The programs included on the library tape are listed in Table 1-4. The num-
ber of locations and the time required by each program are also presented in the
table. LBRWR, the program used to generate a library tape, is described at the
end of this section.

To allow various programs of the Mercury Programming System to share
some library programs (and thus conserve core storage), it was necessary to
recode these library programs to protect intermediate or temporary results
from program interrupts and subsequent entry into the library program before
the interrupted pass could be completed. This recoding requires two library
tapes:

a) "Regular SOS Library'—a tape on which each program contains its own
temporary storage. This tape is used with SOS in compiling programs
for testing (whether or not the programs are later incorporated into the
Mercury Programming System).

b) '"Mercury SOS Library''—a tape on which the programs lack individual
temporary storage. A program compiled using this tape (such as the
Mercury Programming System) must provide such storage by including
a COMMON BSS 5,0 and arranging to preserve the five COMMON loca-
tions any time a program interrupt (trap) occurs. LBR cards of the
form LBR U1SICO (with a blank location field) must be inserted in an
unheaded section of the program, though not necessarily in the order
in which the programs appear on the Library tape. Within any headed
sections using library programs, cards of the form SIN SYN $SIN
must be included for each exempt symbol. One or more '"exempt
symbols" are listed for each library subroutine. A card of the form
LBR U1SICO will cause all instructions in the subroutine to be rela-
tivised to those symbols specifically exempted from relativization.

(To see the expanded routine in this form, a DETAIL card should pre-
cede the LBR card. A LIST card following the LBR will restore the
remainder of the listing to the undetailed mode. To suppress relativi-
zation and thereby bring in all symbols from the original symbolic
version of the subroutine, a card of the form LBR U1SICO, U should
be used.)

The exempted symbols are normally those to which the user must have
access in the variable field of his TSX instruction. The indication of
which symbols are to be exempted is made at the time the library tape
is prepared.

1-81

MC 63-4

TABLE 1-4. MERCURY SOS LIBRARY TAPE PROGRAMS

Average Time
Address of | Storage Required
Name Description TSX Required | (milliseconds)
Instruction |(Decimal)
IBM 709 |I1BM 7094
UISICO [Sine/Cosine SIN or COS 99 2.20 | 0.260
U1EXPE | Exponential EXP 52 3.05 0.200
UTSQRT |Square Root SQRT 43* 1.15 0.150
UILOGE |Natural Logarithm LN 419 0.85 0.09
UTATAB | Arctangent A/B (requires UTATNA)** ATNAB 31* 3.01 0.080
UTATNA|Arctangent A ATNA 81* 2.44 0.230
U1ASCO |Arcsine/Arccosine ARSIN or n7* 1.75 | 0.251
ARCOS
UITACO | Tangent/Cotangent TAN or COT 88* 2.30 0.24
UIFXPT |Fix a Floating-Point Number FIX 25* 0.42 0.056
UIFLPT |Float @ Fixed-Point Number FLOAT 21* 0.65 0.071
U3DOTP|Vector Dot Product u3DoT 18* 0.98 0.102
U3XPRO|Vector Cross Product U3XPR 33* 1.83 0.199
U3MATM|Matrix Multiplication U3MAT 81 2.80 0.31
UAILSC |Converts XYZ Coordinates to RAE (requires |A1LSC 209 49.4 4.9
UISQRT, U1ATAB, UI1SICO; each used
twice)**
U7INTP |Six-Point Langrangian Interpolation UINTP 258* | 26.37 4.02
U3VMAG | Vector Magnitude (requires U1SQRT)** VYMAG 19* 2.46 0.130
U3VPRO|Vector Triple Cross Product VPRO 80 4.41 0.49
USUNTV |Unit Vector (requires UISQRT)** UNITV 30* 3.52 0.374
U7RVTH |Elliptic Motion Computation (requires CI9RVTH or 380 18.46 2.91
UISQRT UTATAB, U3DOTP, U3VMAG, |C9RVT2
U7ASKE**
U7ASKE |SolveKepler's Equation (requires U1SICO)** |C9ASK E 104 18.68 3.09
UAMSCP [Sub Spacecraft Position (requires A3MSCP or 119 8.71 1.35
UTSQRT, UTATAB)*** A3MSCP +12

*Recoded for the Mercury SOS Library tape to store temporary results in a 5-cell table common
to all indicated programs. The temporary storage cells are not included in the storage listing

above.

**When additional library programs are necessary for any library program, the ‘‘Average Time Re-
quired”” specifies the total time of execution, i.e., the time of the main library program plus the
time of the other library programs used by it as subroutines. If equivalent programs are substi-
tuted, the time of the main library program alone may be obtained by subtracting the time re-
quired by the subroutines from the time listed for the main program.

1-82

MC 63-4

Caution: I a location symbol is assigned to the LBR card itself, it
will replace the symbol attached to the first instruction generated by
the library routine rather than be made synonymous with it.

1.3.1 SINE/COSINE SUBROUTINE (U1SICO)
U1SICO computes the sine or cosine of an angle.

1.3.1.1 Input Requirements

The normalized floating-point angle in radians must be in the accumulator
upon entry into U1SICO. The absolute value of the argument must be less than

236,
1.3.1.2 Output Requirements

The normalized floating-point sine or cosine is present in the accumulator
upon exit from U1SICO. The execution of U1SICO turns on the AC overflow

indicator.

1.3.1.3 Method

This subroutine was adapted from the SHARE-distributed subroutine IBSIN1.
Sine x is evaluated from one of two continued fractions.

a) For |x | =.3

2
Sine x = x (19. 8459242619 + 3 - 21042'92670814)

X + 50,0302454854

b) For.3< |x| =<1.3:

Sine x = 19. 47714945237 - 2m>

3276. 33995164 - 320m°

m? + 82.5803019956 + 5 2287.44319569

m + 24.1448946943

where m = (7/2 - x)

Cosine x is evaluated as sine (7/2 - x)

1-83

MC 634

1.3.1.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX SIN, 4 or COS, 4

+1 Error return

+2 Normal return

b) Error Conditions—an error return is made for any absolute value of

the argument equal to or greater than 236, or if the divide check indi-
cator has been turned on during the execution of the program.

c) Storage Required—99 cells (plus five cells of common storage).
d) Time Required:

Sine 0.22 milliseconds
Cosine 0.260 milliseconds

e) Accuracy—the relative error is less than 1/2 x 10”°,

f) Exempt Symbols—SIN, COS.

g) Library Identification—LBR U1SICO.

1.3.2 EXPONENTIAL SUBROUTINE (ULEXPE)

U1EXPE computes the value of the natural exponential function ex.
1.3.2.1 Input Requirements

The normalized single-precision floating-point argument (x) must be in the
accumulator upon entry into ULEXPE. The absolute value of x cannot exceed
88. 088.
1.3.2.2 Output Requirements

The normalized floating~point product is present in the accumulator upon
exit from Ul1EXPE.

1.3.2.3 Method
This subroutine uses a rational approximation developed by E. G. Kegbetli-

antz (IBM Journal of Research and Development, April 1957, pp. 110-115), and
was adopted from the SHARE-distributed subroutine IBFXP.

1-84

MC 63-4

From the Padé table for ex, the diagonal elements Pmm (X) = Pm (X) are

X _ Pm (X) X
chosen so e =m + e Rm (x)

m
(2m-s)!xs

(s! (m-s)!)
s=0

(2m) ! Pm (x) = m !

and eX= oX log2e= o + f

where 0 < f < 1.

Therefore, e = zmzf

where m is the binary characteristic of e .
The value of 2f is computed for the interval 0 < f < 1,
By choosing m = 4 in the rational approximation, the bound for the relative
error is Rm (x) < 3 - 1077,
Therefore,
2f= 1+ 2f [A+ B - £C (f2+D)'1] -1
The values for the constants are:
A= 9,95459578
B= 0.03465735903
C = 617.97226953
D= 87.417497202
logze = 1.44226950409
1.3.2.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX EXP, 4

+1 Error return

+ 2 Normal return

b) Error Conditions—an error return is made with x in the accumulator
for any value of x greater than 88.088. (A normal return is made with
zero in the accumulator if x is less than -88.088). An error return is

1-85

MC 63-4
also made, with eX in the accumulator, if the divide check indicator is
turned on during execution of the subroutine.
c) Storage Required—52 cells (plus five cells of common storage).
d) Time Required:
Average 0.200 millisecond

Maximum 0. 35 millisecond

e) Accuracy—the number of significant bits in the result is at least 155-
C, where C is the characteristic of the argument x.
f) Exempt Symbol—EXP,

g) Library Identification—LBR UlEXPE.

1.3.3 SQUARE ROOT SUBROUTINE (U1SQRT)
U1SQRT computes the square root of a number.
1.3.3.1 Input Requirements

The accumulator must contain the normalized single-precision floating-
point argument upon entry into U1SQRT.

1.3.3.2 Output Requirements

The accumulator contains the normalized floating-point square root upon
exit from U1SQRT. The AC overflow indicator light is turned on during the
execution of the program.

1.3.3.3 Method

This subroutine was adapted from the Share-distributed subroutine IBSQ1:
if the argument is zero (positive or negative), it is returned. If the argument
is algebraically less than zero, an error return occurs with the argument in the
accumulator.

The floating-point argument has the form x - ZC, where x is the normalized
fraction part (.5 < x < 1) and C is the characteristic. If the characteristic is
odd, it is increased by one and the fraction part is divided by two (the fraction
part is shifted one bit position to the right).

1-86

MC 63-4

Setting C = 2b, /N J/x. 220 - 9P /;

The first approximation of ,/X is found by ,/x = Ax + B.
For 0.256 = x< .5: A=0.875, B =0.27863
For 0.5 = x<1: A=0,578125 B=0.421875

The first approximation is used to compute the square root (,/N) by two
Newton iterations:

-y 1 (N
\/N-az—2<31+a1>

1,3.3.4 Usage

a) Calling Sequence:

alpha TSX SQRT, 4
+1 Error return
+ 2 Normal return;,

b) Error Conditions—an error return occurs with the argument in the
accumulator for all values of the argument less than negative zero.
An error return also occurs if the divide check indicator light is
turned on during the execution of the program. (A normal return with
the argument in the accumulator is made for arguments of plus and
minus zero.)

c) Storage Required—43 cells (plus three cells of common storage).

d) Time Required—

IBM 7094
Average 0.150 millisecond
Maximum 0.118 millisecond

1-87

MC 63-4

e) Accuracy—26 significant bits.
f) Exempt Symbol—SQRT.
g) Library Identification—LBR U1SQRT.

1.3.4 NATURAL LOGARITHM SUBROUTINE (U1LOGE)

U1LOGE computes the natural logarithm of a number.

1.3.4.1 Input Requirements

The accumulator must contain the argument in floating-point format upon
entry into UILOGE. The argument must be positive and greater than zero.
1.3.4.2 Output Requirements

The accumulator contains the natural logarithm of the argument in floating-
point upon exit from U1LOGE. '

1.3.4.3 Method

The floating-point argument is in the form F- ZC, where C is the character-
istic and F is the fraction part.

¥x=F2°, lnx=LnF+CLng, andLnx=Ln§ +InA+C Ln2.

In the common natural logarithm series (let-‘{- =Y):

3 5
oly-1.1 X'l) l(y-l)
Lny—Z[y+1+‘§<y+1 +-5'm +..

If y is very nearly equal to 1, only the first term need be considered.
Therefore, A is chosen (by taking the first eight bits of F and adding a 1 in
the ninth bit position) very nearly equal to F, and the equation becomes:

Inx=CIn2+LnA+2(F-A)/(F+A).

The 256 possible values of Ln A are contained in a table within U1LOGE.

1-88

MC 63-4

1.3.4.4 Usage

a) Calling Sequence:

alpha TSX LN, 4
+ 1 Error return
+ 2 Normal return

b) Error Conditions—an error return occurs when the argument is not
greater than positive zero, and an indication is stored in the decrement
of location LN: a 1 in the decrement for a negative argument, a 2 for
an argument of positive zero.

c) Storage Required—419 cells.

d) Time Required—0.090 millisecond, average.

1.3.5 ARCTANGENT A/B SUBROUTINE (U1ATAB)

UlATAB computes the arctangent of the quotient A divided by B.

1.3.5.1 Input Requirements

The ordinate A must be in the accumulator and the abscissa B must be in
the multiplier-quotient upon entry to ULATAB. Both numbers must be in nor-
malized floating-point form and cannot simultaneously be equal to zero. The
program must have access to ULATNA.

1.3.5.2 Output Requirements
The accumulator contains the computed angle in floating-point radians upon

exit from UIATAB. The absolute value of the angle is equal to or less than
radians.,

1-89

MC 63-4

1.3.5.3 Method

This subroutine was adapted from the SHARE-distributed subroutine IBATN1
(modified). U1lATAB divides A by B and then uses ULATNA to compute the abso-
lute value of the quotient obtained. UIATAB places the angle in the proper
quadrant,
1.3.5.4 Usage

a) Calling Sequence:

alpha TSX ATNAB, 4
+1 Error return
+ 2 Normal return

b) Error Conditions—an error return occurs if A= B = 0.

c) Storage Required—31 cells (plus five cells of common storage), not
including the subroutine UIATNA.

d) Time Required (includes execution of U1ATNA)—0. 080 millisecond,
average.

e) Accuracy—26 significant bits.

f) Exempt Symbol—ATNAB.

g) Library Identification—LBR UIATAB.

1.3.6 ARCTANGENT SUBROUTINE (ULATNA)

UlATNA computes the arctangent of a number.

1.3.6.1 Input Requirements

The accumulator must contain the argument in floating-point format upon
entry into UIATNA.

1-90

MC 63-4

1.3.6.2 Output Requirements

The accumulator contains the computed angle in floating-point radians
upon exit from UIATNA. The absolute value of the angle is equal to or less
than 7 /2 radians.

1.3.6.3 Method

UlATNA uses a rational approximation method developed by E. G. Kogbet-
liantz (IBM Journal of Research and Development, January 1958, pp. 43-53),
and was adapted from the Share-distributed subroutine IBATNI1.

Given: ¢ = arctan x. If the absolute value of x is greater than 227, 0 is

assumed to be /2. If the absolute value of x is less than 2-13
to be equal to x.

, 0 is assumed

If neither of the above conditions is satisfied, x is divided into five sub-
intervals and the arctangent is computed from the following formulas:

T
0= X + K
2-B +T2+C X
TS +A X
b 4
where:

A =0.051119459
B = 0.0027099425
C =0.21664913599
T, may have two forms, depending upon the range of x,
For |x|<0.1763298071:
T, = 0.16363636363X

For |x| 20.1763298071:

The values of the constant terms for each range are given below.
a) For Ix1<0,1763298071 (161<10°):
K =0

X

1-91

MC 63-4

b) For 0.1763298071< IxI < 0.5530526919 (10°< 161 < 30°):

L_ = 0.44958721409

X
Mx = 1.398867082
Nx = 2,7474774195
Kx = 0,3490658504

c) For 0.5530526919< 1x1<1.1917535926 (3005 101< 500):

L_ = 0.19501422424
M_ = 0.39604526598
N_ =1.1917535926
K_ =0.6981317008

»

o

™

»

o
d) For 1.1917535926 < Ix1< 2,7474774195 (50°_<_ 101<707):

L_ =0.094475498595
M_=0.21818181818
N_ =0.057735026919
K_ =1.047197551

»”

»

»

»

e) For 2.7474774195< ix! (70°< 161):

L_ =0.0288535059
M_ =0,1687240152
N_ =0.17632698071
K _ =1.396263402

oo A

»

1.3.6.4 [Usage
a) Calling Sequence:
alpha TSX ATNA, 4
+1 Normal return
b) Error Conditions—none.

c) Storage Required—81 cells (plus four cells of common storage).

1-92

‘ MC 63-4

d) Time Required:
Average 0.230 millisecond

Maximum 0.28 millisecond

e) Accuracy—26 significant bits.
f) Exempt Symbol—ATNA.

g) Library Identification—LBR UlATNA.

1.3.7 ARCSINE/ARCCOSINE SUBROUTINE (U1ASCO)

U1ASCO computes the arcsine or the arccosine of a number.

1.3.7.1 Input Requirements
The normalized floating-point argument (whose absolute value must be < 1)
. must be in the accumulator upon entry into! U1ASCO.
1.3.7.2 Output Requirements

The floating-point answer is present in the accumulator upon exit from
U1lASCO. The result is expressed in radians, within the following limits:

- % < arcsine s-g— : 0L arccosine < r.

1.3.7.3 Method

This subroutine uses a method developed by E. G. Kogbetliantz (IBM Journal
of Research and Development, Vol. 2, No. 3, July 1958, pp.218-222). This sub-
routine was adapted from the Share-distributed subroutines IBASN2 and IBACS2.

In the determination of arcsine x, the range of x(0 < |x| < 1) is divided into
four intervals to define f(x) = arcsine Xx.

a) For0<ixi<2™t & i) -x

1-93

MC 63-4
o

b For 2 cmg¥E: f(x)=x<A+B)[c+x2-n{E-x2}‘1]‘1

where:

A =0.5249978317
B =1,578342904

C =3.5574340883
D =0.3321585891
E =1.4156902913

V2 V2 + V2 1
—2—<lx|£—2—: f(x) = i +§p(y)
where:

pO) =y (A + B[c -y - D{E _y2}-1]-1)

y=2x2-1

c) For

d) For ——“22"‘/2<|x| <1: f(x) =-; -2 —5—" (1.085180421 - 0.0852176716x)
The arccosine is evaluated: arccosine x =g - arcsine x.
1.3.7.4 Usage

a) Calling Sequence:

alpha TSX ARSIN, 4 or ARCOS, 4
+ 1 Error return
+ 2 Normal return

b) Error Conditions—an error return occurs if the absolute value of the
argument exceeds one. An error return also occurs if the divide check
indicator light is turned on during execution of the program.

c) Storage Required—117 cells (plus five cells of common storage).

1-94

MC 63-4

d) Time Required:
Range of Argument

0s|x| =2t 0.026 millisecond
2711 < |x | < \/-g- 0.157 millisecond
J2 .

3 < x| =<1 0.223 millisecond

(Times given apply to arcsine; computation of arccosine requires an
additional 0.028 millisecond for IBM 7094.)

e) Accuracy-—the relative error is less than 6.4 x 10—7; in most cases
the result is accurate to seven significant digits.

f) Exempt Symbols—ARSIN, ARCOS.

g) Library Identification—LBR U1ASCO.

1.3.8 TANGENT/COTANGENT SUBROUTINE (U1TACO)

U1TACO computes the tangent or the cotangent of an angle.

1.3.8.1 Input Requirements

The normalized floating-point argument expressed in radians must be in
the accumulator upon entry into UITACO. The argument of tangent must be

35

within the range |x|< 2 The argument for the cotangent must be within

the range | x| = 27126,

1.3.8.2 Output Requirements
The accumulator contains the normalized floating-point tangent or cotan-

gent upon exit from U1TACO. Execution of the program turns on the AC over-
flow indicator light.

1.3.8.3 Method
The function is evaluated from a continuous fraction, based on a method

developed by H. J. Maehly and E. G. Kogbetliantz. The subroutine was adapted
from the Share-distributed subroutine IBTANI1.

1-95

MC 63-4

a) The argument is reduced to the first octant, where
Cot x = (3.4280166678 - 0.1015625000x%) -
+ (25.2265398966) (x° - 10.43274050825) "} - C(x)

For Ix1 <.15, C(x) = 0.526-107"
For ix1>.15, C(x) =0

b) The tangent is computed from the cotangent in the first octant using
the following relationships:

-7 w
For 45x$4, tan x =

n

For Y

<Ix|g§"; tanx=cot(§-x)

1.3.8.4 Usage

a) Calling Sequence:

alpha TSX TAN, 4 or COT, 4
+1 Error return
+ 2 Normal return

b) Error Conditions—an error return occurs if the magnitude of the argu-

35 or if the magnitude of the

argument for the cotangent is less than 2_126. An error return occurs

if the divide check indicator light is turned on during the execution of
the program.

ment for the tangent exceeds modulo 2

c) Storage Required—88 cells (plus five cells of common storage).
d) Time Required—0.240 millisecond, average

e) Accuracy—the absolute error is less than 8.6 10-9; the relative error

is less than 5. 26105,

1-96

MC 63-4

f) Exempt Symbols—TAN, COT,

g) Library Identification—LBR U1TACO.

1.3.9 FLOATING TO FIXED-POINT CONVERSION SUBROUTINE (U1FXPT)

UlFXPT converts a number from floating-point to fixed-point format.

1.3.9.1 Input Requirements

The accumulator must contain the floating-point number upon entry into
UlFXPT. The floating-point number to be converted must satisfy the con-

2—35 35

ditions: < N= 277,

1.3.9.2 Output Requirements

The accumulator contains the integral part of the number and the multi-
plier-quotient contains the fractional part of the number upon exit from ULFXPT.

1.3.9.3 Method

The floating-point number of the form X - 2C is examined to determine
whether the characteristic C satisfies the conditions: 93 < C < 164. K C is
outside the allowable range, an error return occurs since the leading bit of the
result would be lost.

The 26 bits of the fractional part of the floating-point number are shifted
so the fixed-point integral is right-justified in the accumulator and the fixed-
point fraction is left-justified in the multiplier-quotient. The AC and MQ are
effectively treated as one register with the decimal point for the fixed-point
number after accumulator bit position 35.

1.3.9.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX FIX, 4
+1 Error return
+ 2 Normal return

1-97

MC 63-4

b) Error Conditions—an error return occurs when the characteristic of
the given floating-point number is such that the fixed number would
have no significant bits.

c) Storage Required—25 cells (plus two cells of common storage).

d) Time Required—0. 056 millisecond, average

e) Accuracy—26 significant bits.
f) Exempt Symbol—FIX.

g) Library Identification—LBR U1FXPT.

1.3.10 FIXED- TO FLOATING-POINT CONVERSION SUBROUTINE (U1FLPT)

UlFLPT converts a number from fixed-point to floating-point format.

1.3.10.1 Input Requirement

The accumulator must contain the integral part of the fixed-point number,
right-justified, and the multiplier-quotient must contain the fraction part of the
fixed-point number upon entry into UIFLPT. The fixed-point number (FX)

must satisfy the conditions: 2_35 < FX< 237. If this number is an integer,

the MQ must be cleared. If the magnitude of the number is less than one (the
number is a fraction), the ACQ P.1-35 must be cleared.
L ?

1.3.10.2 Output Requirements

The accumulator contains the converted floating-point number upon exit
from U1FLPT.

1.3.10.3 Method

The 72-bit argument (ACQ’ P,1-35 and MQ1_35) is divided into two 27-bit

bytes and an 18-bit byte. If the high-order byte is zero, it is temporarily
stored as a normal floating-point zero. If the high-order byte is nonzero, it
is given a characteristic of 165 and temporarily stored.

1-98

MC 63-4

The second byte is examined and, if nonzero, is given a characteristic of
138 and temporarily stored. The low-order byte is right-justified and given a
characteristic of 120. The three bytes now in normalized floating-point format
are added, giving the normalized floating-point result.

1.3.10.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX FLOAT, 4
+1 Normal return

b) Error Conditions—none.

¢) Storage Required—21 cells (plus two cells of common storage).

d) Time Required—0. 071 millisecond, average

e) Accuracy—26 significant bits.
f) Exempt Symbol—FLOAT.

g) Library Identification—LBR U1lFLPT.

1.3.11 DOT PRODUCT SUBROUTINE (U3DOTP)

U3DOTP computes the dot (inner) product oftwo, real 3-dimensional
vectors.

1.3.11.1 Input Requirements

The three components for each of the two operand vectors must occupy
three consecutive locations in core storage in corresponding order and must be
expressed in single-precision floating-point format. The first location of the
components of one vector must be stored in LLV1, the address of the second
word of the calling sequence; the first location of the components of the second
vector must be stored in LV2, the decrement of the second word of the calling
Sequence upon entry to USDOTP, The program which uses USDOTP provides
locations designated by LV1 and LV2.

1-99

MC 63-4

1.3.11.2 Output Requirements

The accumulator contains the floating-point scalar product upon exit from
U3DOTP,

1.3.11.3 Method

-—d

If the components of V1 and V2 are Vla + V1b + Vlc and V2a + V2b + V2c ,
the dot product is defined:
Vi V2= Vias Vaa* Vap e Vot Vie - Vae

1.3.11.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX U3DOT, 4
+1 PZE Lv1,,LV2
+2 Normal return

b) Error Conditions—none.
c) Storage Required—18 cells (plus two cells of common storage).
d) Time Required:

Average 0.102 millisecond

Maximum 0.137 millisecond

e) Accuracy—26 significant bits.
fy Exempt Symbol—U3DOT.

g) Library Identification—LBR U3DOTP.

1.3.12 CROSS PRODUCT SUBROUTINE (U3XPRO)

U3XPRO computes the cross (outer) product of two, real 3-dimensional
vectors.

1-100

MC 63-4

1.3.12,1 Input Requirement

The three components for each of the two openend vectors must occupy
three consecutive locations in core storage in corresponding order and must be
expressed in single-precision, floating-point format. The first location of the
components of one vector must be stored in LV1, the address of the second
word of the calling sequence; the first location of the components of the second
vector must be stored in LV2, the decrement of the second word of the calling
sequence upon entry to USXPRO. The program which uses U3SXPRO supplies
the locations designated by LV1 and LV2.

1.3.12.2 Output Requirements

The three components of the vector cross product are stored in three con-
secutive core storage locations in the same order as that of the operand vectors
upon exit from U3XPRO. The location in which the first component is stored,
LV3, is contained in the address of the third word of the calling sequence and
is supplied by the program which uses USXPRO.

1.3.12.3 Method

- - - -y
If the components of V1 and V2 are Vla + V1b + Vlc and V2a + V2b + Vzc,

the cross product is defined:

-t - - - -
V3a ™ Vib Vo) = Vi (Vo)
Y - - - -
Vab = Vie (Voa) = Via (Vao
- - - - N
Vae = Via (Vap) = Vip (V)

1.3.12.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX U3XPR, 4
+1 PZE LV1,,LV2
+ 2 PZE LV3
+ 3 Normal return

1-101

MC 634

b) Error Conditions—none.
c) Storage Required—33 cells (plus two cells of common storage).

d) Time Required:
Average 0.199 millisecond
Maximum 0. 242 millisecond

e) Accuracy—26 significant bits.
f) Exempt Symbol—U3XPR.

g) Library Identification—LBR U3XPRO.

1.3.13 MATRIX MULTIPLICATION SUBROUTINE (USMATM)

U3MATM computes the product of two matrices.

1.3.13.1 Input Requirements

The two input matrices must be rectangular and must each be stored in
consecutive core storage locations by rows. The address of the second and
third words of the calling sequence must contain the first locations, respectively,
of the two input matrices, A and B. The address of the fourth word of the
calling sequence must contain the first location of the matrix product, C. The
decrement of the second, third and fourth words must contain the matrix di-
mensions L, M and N, respectively, which define the dimensions of the three
matrices in the following manner: if A is Lx M and Bis M x N, then C is
LxN.

1.3.13.2 Output Requirements

The matrix product is stored by rows in L x N consecutive core storage
locations, beginning with the location specified by C.

1.3.13.3 Method

U3MATM uses the standard row-by-column multiplication to obtain the
matrix product elements.

1-102

MC 63-4

1.3.13.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX U3MAT, 4
+1 PZE A,, L
+ 2 PZE B,,M
+3 PZE C,,N
+ 4 Normal return

b) Error Conditions—none.
c) Storage Required—81 cells.

d) Time Required—0. 31 millisecond, average

e) Accuracy—26 significant bits.
f) Exempt Symbol—U3MAT.

g) Library Identification—LBR U3MATM.

1.3.14 STATION COORDINATE CONVERSION SUBROUTINE (UA1LSC)

UA1LSC converts an inertial position vector into values of range, azimuth
and elevation. The flow chart for UA1LSC is shown in Figure 1-1.

1.3.14.1 Input Requirements

The address of the second word of the calling sequence must contain the
location of a 5-cell input block; the decrement of the second word must con-
tain the first location of a 12-cell block which contains the output. The 5-cell
input block contains:

Location Contents

LCINP Time of observation (minutes in address, seconds in
decrement) in GMT for the following inertial position
vector.

1-103

MC 63-4

Location Contents
+1 X component of spacecraft position, floating-point
+ 2 Y component of spacecraft position, floating-point
+ 3 Z component of spacecraft position, floating-point
+ 4 Location of the station characteristics block for the station.

UA1LSC must have access to the following programs: UlSQRT, UlATAB
and U1SICO.

1.3.14.2 Output Requirements

UA1LSC fills a 12-cell output block as shown below:

Location Contents
LCOUT Range (R), floating-point Mercury units
+1 ‘Azimuth angle (A), floating-point radians
+2 Elevation angle (E), floating-point radians
+3 -s8in)\
+ 4 cos X
+5 0
+6 -cos X\ 8in ¢
+7 -sin A sin ¢
+ 8 cos ¢
+9 COS \ COS ¢
+10 sin A cos ¢
+ 11 sin ¢

The last nine cells contain the three rows of the M matrix. The angles are
defined in the following subsection.

1-104

® MC 63-4

1.3.14.3 Method

UA1LSC uses the following equations to compute range, azimuth and
elevation:

e
X -sin)\ cos)\ 0 X 0
Y |=[-cos) singp -sin) sing cos @ Y R_sin(@ -¢ ")
z* cos X\ cos¢ sin)\ cos ¢ sin ¢ y/ -R cos(p - ¢ “)
’
R = \/(X")2 + (¥ + (Z2"? sin E =%
A = arctan éz >
Y cos E=Y1 -sin" E
! E = arctan SinE_
| cos E
‘ where:
A = longitude of the station
)\6 = longitude of station at reference time
t = time (in minutes) since reference time
we = rotation of earth, radians/minute = 0.00437526905
X,Y,Z = given inertial spacecraft position coordinates
RS = geocentric radius of earth at station, Mercury units
[0 = geodetic latitude of station
! 0" = geocentric latitude of station

1.3.14.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX Al1LSC, 4
+1 PZE LCINP,,LCOUT
1-105

MC 63-4

Location Operation Address, Tag, Decrement
+ 2 Error return
+3 Normal return

b) Error Conditions—the decrement of A1LSC contains the source of the
error return—1, 2 or 4 indicate error returns from U1SQRT, UlATAB
or UISICO, respectively. There is no error return from UA1LSC
itself.

c) Storage Required—209 cells.

d) Time Required (includes execution of U1SICO, U1SQRT and UlATAB,
each twice): 4.9 millisecond, average

e) Accuracy—the range (R) is accurate to 26 significant bits; the azimuth
(Z) and elevation (E) angles are both accurate to seven significant
digits.

f) Exempt Symbol—A1LSC.

g) Library Identification—LBR UA1LSC.

1-106

STORE T, X, Y, Z,
LOC. OF STATION
BLOCK

CONVERT T TO
FLOATING-POINT
MINUTES

CALCULATE STATION
INERTIAL LONG. L =
AQ + .00437526905¢t

Y

ADJUST L TO BE
BETWEEN O AND
27

|

STORE
ERROR
CODE

STORE
utsico ERROR | FRROR
SINL, COSL] CODE
RETURN| =1 STORE
ERROR
! CODE
CALCULATE, STORE IN
ROWS: M=
—SINL cosL
—:COSLSINg -SINL SIN® cos¢ ERROR
COSL COS¢p SINL COSd sIND RETURN
|
CALCULATE:
’ X
Y)=MlY
z’ z
FIGURE 1-1.

FRROR

RETUR

MC

63-4

CALCULATE : R=

x'» x’
(y ">= Y + Rg SIN(p — ¢))
z/l

\

2’ - Rg COS(¢p — qS’V

CALCULATE, STORE:
R=|R|=r"

)

U1ATAB

A= ARCTAN X ’7Y**

Y

ves| sTone
(IS A PLUS)—— OUTPUT
BLOCK
‘ NO
CALCULATE, STORE:
A=A+ 27
U1ASCO

E= ARCSIN Z*/¢**

NORMAL
RETURN

UAILSC SUBROUTINE FLOW CHART

1-107

MC 63-4

1.3.15 SIX-POINT LAGRANGIAN INTERPOLATION SUBROUTINE (U7INTP)

UT7INTP performs a 6-point Lagrangian interpolation to determine inter-
mediate values of the radius or radius and velocity vectors. The flow chart
for UTINTP is shown in Figure 1-2.

1.3.15.1 Input Requirements
The following conditions apply for all entries to UTINTP:

a) All vector components must be expressed in floating-point format.

b) The address (TOBMN) and the decrement (TOBSC) of the second word
of the calling sequence must contain the minutes and seconds, respec-
tively, of the time for interpolation.

¢) The address (LOCNI) and the decrement (LCOUT) of the third word in
the calling sequence must contain, respectively, the location of the
numerical integration table to be used for interpolation and the loca-
tion for storing the generated output block of vector components.

The fourth word (Alpha.+ 3) of the calling sequence correlates the numerical
integration ing}vlt table with the interpolation output required, as shown below:

a) Combinations for Interpolation:

Address, Tag,

Interpolation Numerical Integration Table Decrement (o + 3)
Radius Radius 0 ’) 0
Radius Radius and velocity 0,,1
Radius and velocity Radius and velocity 1,,1

b) Format of Numerical Integration Table:

Location Contents
LOCNI Time increment of table (0 = minutes, 1 = seconds)
+1 Integration output interval
+ 2 Time tag of first vector in table
+3 Time tag of last vector in table
+ 4

+ 5 l
+6 Components of first radius vector
+ 7 5

1-108

MC 63-4
Location Contents
+ 8 Components of first velocity vector, if table contains
+9 radius and velocity; components of second radius vec-
+ 10 tor if table contains only radius values.
etc.

U7TINTP may use either a "minutes' integration table if the time of
interpolation is an integral number of minutes, or a ''seconds" inte-
gration table if the time is an integral number of seconds.

Special Case, Extract Anchor Point—with the tag of the second word
of the calling sequence (T) equal to 1, U7INTP extracts the radius and
velocity vectors for the time specified, TOBMN, from the specified
numerical integration table. The table must contain both radius and
velocity vectors (the decrement of Alpha + 3 must be 1) and the table
must contain components of the vectors for 1-minute intervals (the
contents of location LOCNI must be zero).

1.3.15.2 Output Requirements

The output from U7INTP depends upon the conditions established at entry.

2)

Interpolation Case:

Location Contents
LCOUT T
b 4
+1 ;y Interpolated components of radius vector
+ 2 ;
Z
-
+ 3 v
b4
+ 4 ; Interpolated components of velocity vector, if
_’y velocity interpolation is required
+5 v
z

~

1-109

MC 63-4

b) Anchor Point Extraction:

Location Contents
LCOUT TOBMN ("Time of Observation" in minutes)
+1 T
X
+ 2 ;y Extracted radius vector
-—d
+3 r
z
+ 4 ;;
X
+5 ;y Extracted velocity vector
+ 6 ;
z

1.3.15.3 Method

a) Interpolation—U7INTP uses a 6-point Lagrangian interpolation. The
numerical integration table must contain the three points prior to and
after the input time (TOB). The interpolated radius (or vector) com-

ponent ? is computed from the formula:

-—d

. 3
r =% L, r

i=-2 11
where ;_2, ;_1 and ;0 are the vector components for the three times
immediately prior to the input time; T,, T, and T, are the vector com-

1’ "2 3
ponents for the three times immediately following the input time; and
Li is defined as:

L,=-135 ®+D® (t- D (t-2) (t-3)

Ly=+37(t+2) (0 (t- 1) (t-2) (£ - 3)
Ly = - 35 (t+2) (t+ 1) (t- 1) (¢ - 3)

1-110

MC 63-4

Ly = + 15 (t+2) (t+ 1) () (6~ 2) (- 3)
L, = - 57 (£+2) ¢+ 1) () (t-1) (¢ - 3)
Ly = +1—;-6(t+2) t+1) (1) (t-1) (t-2)

and t is the ratio of the time increment (time of T minus time of ;0)

to the interval between any two adjacent corresponding vector com-
ponents in the numerical integration table. Therefore, t< 1.

b) Anchor Point Extraction—U7INTP searches the given numerical inte-
gration table for the required values and places them in the assigned
output location.

1.3.15.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX UINTP, 4

alpha + 1 PZE TOBMN, , TOBSC
alpha + 2 PZE LOCNI, T, LCOUT
alpha + 3 PZE (Output), , (Input)
alpha + 4 Error return

alpha + 5 ' Normal return

b) Error Conditions—an error return occurs if sufficient vector com-
ponents are not available in the numerical integration table to perform
a 6-point interpolation. The contents of the accumulator indicate
which part of the numerical integration table prohibits interpolation:
zero indicates insufficient vectors at the beginning; a 1 indicates in-
sufficient vectors at the end. An error return also occurs if, in the
anchor point case, a numerical integration table with second intervals
is specified.

c) Storage Required—258 cells (plus five additional cells of common
storage).

1-111

MC 634

d) Time Required:

Interpolation IBM 7094
r only 2. 81 milliseconds
; and ;r. 3.76 milliseconds
Anchor Point 0.26 millisecond

e) Accuracy—26 significant bits.
f) Exempt Symbol—UINTP.

g) Library Identification—LBR UT7INTP.

1-112

MC 63-4

SAVE XR’S,
READ INPUT,
CONVERT TIME
TO FLOATING-
POINT

DESIRE
ANCHOR
POINT

USE MINUTES
N.l. TABLE

N

o o |~
S M TE o NDING POINTS
ES

Y

CONVERT <
INITIALIZE XR'S, MINUTES TO YE 52222?&;
CONVERT MIN TO SEC, SECONDS TARTIN
CONVERT TIME TO
MERCURY UNITS, Y
STORET AND ¥ HAVE
VECTORS IN ENOUGH = | FIND FIRST
OMPUTE T RORRY : 0
OUTPUT AREA STARTING COMPU ORR VECTOR FROM
POINTS ? N.I. TABLE
NO 1 #
HAVE
ENOUGH FIND FIRST
ENDING VECTOR FROM
POINTS YES|7 &V N.I. TABLE
0 AC NO
\ 1
INTERPOLATE
3 VECTORS
- 1 AC {
STORE
ERROR INTERPOLATED]
RETURN VALUES
- NO DESIRE
INTERPOLATION
OF v VECTOR

RESTORE XR'S

FIGURE 1-2. U7INTP SUBROUTINE FLOW CHART

1-113

MC 63-4

1.3.16 VECTOR MAGNITUDE SUBROUTINE (U3VMAG)

U3VMAG generates the magnitude of a given vector.

1.3.16.1 Input Requirements

The three components for the vector must be stored in three consecutive
core storage locations and must be expressed in floating-point format. The
first location of the components of the vector must be stored in the address of
the second word of the calling sequence, as designated by LV1, upon entry
into U3VMAG. The program must have access to the square root program,
U1SQRT.

1.3.16.2 Output Requirements

The accumulator contains the floating-point magnitude of the given vector
components upon exit from U3VMAG.

1.3.16.3 Method

If the components of the vector, V, are Va +V, + Vc’ the magnitude of the

b
vector is defined:

V=‘/V‘?'+V2+V2
a b c

1.3.16.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX VMAG, 4

alpha + 1 PZE LV1

alpha + 2 Error return

alpha + 3 Normal return

b) Error Condition—an error return is an almost certain sign of machine
malfunction. An even return from USVMAG is the result of an error
return from the subroutine ULSQRT. Floating-point underflow or
overflow is possible if the characteristic, C, of any of the components
of the given vector fails to satisfy the relation: 63 < C < 192.

1-114

MC 63-4

c) Storage Required—19 cells (plus one cell of common storage).

d) Time Required (includes execution of U1SQRT):

Average 0.130 millisecond

Maximum 0.292 millisecond

e) Accuracy—26 significant bits.
f) Exempt Symbol—VMAG,

g) Library Identification—LBR TU3VMAG.

1.3.17 VECTOR TRIPLE CROSS-PRODUCT SUBROUTINE (U3VPRO)

U3VPRO computes the vector cross-product of three given vectors.

1.3.17.1 Input Requirements

The three components of each of the three input vectors must occupy three
consecutive locations in core storage upon entry into U3VPRO. The components
for each vector must be arranged in corresponding order. If the cross-product

is defined as \-R.’ X (I-} X %, the location of the first component of W must be
stored in the address of the secomi word of the calling sequence (LOC\-i’a), the
location of the first component of U must be stored in the decrement of the
second word of the calling sequence (LOC ﬁa), and the location of the first com-
ponent of V must be stored in the address of the third word of the calling se-
quence (LOC{; a)'

The first location of the three cells, where U3VPRO stores the resultant
vector ¥ components, must be stored in the decrement of the third word of the

calling sequence (LOC?{a) . All values must be in floating-point format.

1.3.17.2 Output Requirements

The three components of the resultant vector are stored in three consecu-

tive core storage locations beginning with the LOC?a.

1-115

MC 634

1.3.17.3 Method
- - - - -d -d - - - -)
Y =W x(Ux V), thenY = (W-V) U-(W - 1) V.

1.3.17.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement
alpha TSX VPRO, 4
+1 PZE LocW,,, Locﬁa
+2 PZE LoCcV,,, Locs?a
+3 Normal return

b) Error Conditions—none .

c) Storage Required—80 cells.

d) Time Required—0.490 millisecond, average
e) Accuracy—eight significant digits.
f) Exempt Symbol—VPRO.

g) Library Identification—LBR U3VPRO.

1.3.18 UNIT VECTOR SUBROUTINE (U3UNTV)

U3UNTYV generates the unit vector of a given vector.

1.3.18.1 Imput Requirements

The three components of the given vector must occupy three consecutive
locations in core storage and must be expressed in floating-point format. The
first location of the three components must be stored in LV1, the address of

1-116

MC 63-4

the second word of the calling sequence. The program which uses USUNTV
supplies the location designated by LV1. U3UNTV must have access to the
square root program, ULSQRT.

1.3.18.2 Output Requirements

The three components of the generated unit vector are stored in three con-
secutive core storage locations in the same order as that of the given vector.
The location in which the first component is stored, LV2, is contained in the
decrement of the second word of the calling sequence and is supplied by the
program which uses USUNTV.

1.3.18.3 Method

The vector magnitude, V, of the vector Vis computed from the components
- -

-
Va’ Vb and Vc. The unit vector components are computed by dividing the

vector component by the vector magnitude. Therefore:

- g -
v \% A"
vo- 2 3 -Pb 3 __¢
a v b v c A"/
1.3.18.4 Usage
a) Calling Sequence:
Location Operation Address, Tag, Decrement
alpha TSX UNITV, 4
+1 PZE Lv1,,LV2
+ 2 Error return
+ 3 Normal return

b) Error Conditions—an error return is a logical impossibility and im-
plies a machine malfunction.

c) Storage Required—30 cells (plus two cells of common storage).

1-117

MC 634

d) Time Required (includes execution of U1SQRT):
Average 0.374 millisecond

Maximum 0.406 millisecond
e) Accuracy—26 significant bits.

f) Exempt Symbol—UNITV.

g) Library Identification—LBR U3UNTV,

1.3.19 COMPUTATION OF ELLIPTIC MOTION DURING LAUNCH PHASE
SUBROUTINE (C9RVTH)

CI9RVTH, called from the SOS library tape by LBR UTRVTH, predicts the
position and velocity of the spacecraft under the assumption of elliptic motion
with no drag or oblateness perturbations.

Given the position and velocity at some time t, CORVTH computes the posi-
tion and velocity at time t + At or at a specified height above the earth.

The flow chart for CORVTH is shown in Figure 1-3.

1.3.19.1 Input Requirements

CI9RVTH may be entered at either of two places, CIRVTH or C9RVT2, de-
pending on whether new orbit elements must be computed. The input which
must be provided to obtain the desired output is summarized below:

a) Entry at CORVTH.

AC MQ Input Output
- - - -t

plus minus r, v, At r', and v

Zero minus ;, ;, hs’ Rs ;, ;;' and At

minus minus ;, ;, hs’ Ry ;, ;r., v and At
- - -t

plus plus r, v, At T

minus or - - nd

7610 plus T, Vv, hs’ Rs r and At

1-118

MC 63-4

b) Entry at C9RVT2, (Prior entry must have been made at CORVTH and
the initial T and V and the corresponding orbit elements must be availa-
ble in core.)

AC MQ Input Output
A -b! —’D'
plus minus At r andv
1 -t
zero minus hs’ RS T , v and At
-t =
minus minus hs’ Rs r, v, v and At
o |
plus plus At T
-5
minus or plus hs’ Rs r and At
Zero

All values are Mercury units. The computed At is assumed positive.
Eccentricity, e, is set = 1 if it initially exceeds unity.

C9RVTH must have access to the UISQRT, UlATAB, UlATNA, U3DOTP,
U3VMAG, and C9ASKE subroutines.

The error returns from all of the above subroutines are NOPs.

The locations of the above input and output quantities are specified in the
calling sequence to CORVTH (see subparagraph 1.3.19.4a).
1.3.19.2 Output Requirements

See above. If At was computed, it will be in the AC in Mercury units upon
exit from CO9RVTH.
1.3.19.3 Method

‘r=|r|landv= v
ecosE=rv2=-1

__r
l-ecos E

ho L
,/a3

a=

1-119

MC 63-4

=l

-
\4

e sin E =
a

e=‘/(e sin E)2+(ecos E)2

fe<e the motion is nearly circular, and the calculation of the

critical’
new position and velocity is not made. A special exit is made from COIRVTH.

_ e sin E _
E = arc tan(é———cos E)’ gs<Es<q

M=E -esin E.

Py 1
If hS is given, compute r' = Rs + hs' (fr >a (1+ e), the specified
height, hs’ is greater than the apogee height and therefore cannot be attained,
and a special exit is made from C9RVTH).

1
1
a-r
ecos E =

esinE'=--\/e2 - (ecosE')2

] 1
M =E -esin E

M -M

At 5

] 1 !
If At is given, compute M = M + n (At). Solve Keplers' equation M =E -e
] b
sin E for E using the subroutine C9ASKE.

' 1
fz-ecosE+cosE cos E+sin E sinE
l-ecos E

1 . ' 1 .

g-5[(cosE-e) sinE - (cos E - e) sin EJ
! - -
r =fr+ gv,

1
Either r = a(1 - e cos E')

1-120

MC 63-4
1

) -

1 !
= arc tan (tan vy).

L sin E cos E' - sin E' cos E
Or f —n[(l-ecosE') (l-ecosE)]

' - cos E' + cos E' cos E + sin E sin E
g 1-ecos E'

-t 1 - -
v=f r+ g'v.

1.3.19.4 Usage

a) Calling Sequence:

alpha TSX C9RVTH, 4 (orbit elements have NOT
been calculated)
or
TSX C9RVT2, 4 (orbit elements have been
previously calculated)
+1 PZE L@®,, L
+ 2 PZE A,,B
t
+3 PZE L(r),, C
+ 4 Error return (circular orbit)
+5 Error return (cannot reach hs)
+ 6 Normal return

where the symbols in the calling sequence are defined as:

AC_ MQ_ A B Kol
plus minus L (At) zZero L (;')
zero minus L(R) Ly L")
minus minus L (R) L (b)) L)

1-121

'MC 63-4

AC MQ A B £
Zero or
minus plus LR s) L (hs) zero
plus plus L (A zero Zero

and L (;) is the address of the first location of a 3-word block contain-
ing the components of the input position vector, in Mercury
units,

L (;) is the address of the first location of a 3-word block contain-
ing the components of the input velocity vector, in Mercury
units.

L (At) is the location containing the input quantity At, in Mercury
units.

L(Rs) is the location containing the input quantity Rs’ radius of the
earth, in Mercury units.

L(hs)‘ is the location containing the input quantity hs’ height of
spacecraft above the earth, in Mercury units.

?
L (;) is the address of the first location of the 3-word block con-
taining components of the computed position vector.

-yt
L (v) is the address of the first location of the 3-word block con-
taining components of the computed velocity vector.

i
L (v) is the address of the first location of a 2-word block; the
first word contains the magnitude of the computed velocity,
the second word contains the computed flight path angle.
b) Error conditions:
1) A return to alpha + 4 indicates a circular orbit.
2) A return to alpha + 5 indicates the orbit will not reach hs‘

3) Error returns from subroutines used have been set to NOPs.

c) Storage Required—3801 0 locations, including constants and temporary
storage, but excluding subroutines.

d) Time Required (maximum number of IBM 7094 machine cycles, exclud-
ing subroutines)—133310.

1-122

MC 63-4

e) Accuracy—Seven significant decimal digits.
f) Exempt symbols—C9RVTH and CORVT2.

g) Library Identification—LBR U7RVTH.

1-123

MC 634

C9RVTH

STORE
AC IN C9ACC
MQ IN CIMQ

!

STORE
INPUT AND
INITIALIZE

!

STORE
ADDRESSES
OF OUTPUT

1

U3VMAG
TO CALCULATE

- -
r + v

1

CALCULATE
e COSE=

rvi—1

!

CALCULATE
r

T i=eCOSE

1

CALCULATE

s

ERROR
RETURN

U3DOTP
TO CALCULATE

- >
r v

CALCULATE
eSINE=

- -
F « Vv

Ve
B

CALCULATE
o= (e SINE)?
+ (e COS E)?

[

UISQRT ERROR
TO CALCULATE RETURN

{

e<e
c

TEST e
AGAINST .

o =.003 a+d

TEST SET
e>1 e=1

CALCULATE
|E = ARCTAN O.SLPLE
- e COS E

-7 < E< 'm

FIGURE 1-3. CIRVTH SUBROUTINE FLOW CHART (Sheet I of 4)

1-124

CIRVT2

STORE
INPUT

!

STORE
ADDRESSES

L

CALCULATE
M=E-~
e SIN E

C90P2

0 OR -

TEST

|

CALCULATE
r’< a(l+e)

!

TEST
" La(l+e)

YES

‘CALCULATE
e COS E” =
(a=r")

Qa

1

CALCULATE

e SIN E” =

~v/ e2—(e COS E)2’

|

CALCULATE
MI= E)_
e SIN E’

NO

FIGURE 1-3. C9RVTH SUBROUTINE FLOW CHART (Sheet 2 of 4)

MC 63-4

C9ACC FOR
\ OPTION) l
C9ONE
CALCULATE
M’ =M +
WAt ERROR
RETURN
TRANSFER
TO C9ASKE TO
a+5 CALCULATE
E SIN E, COS E”
CALCULATE
e SIN E
e COSE’
o 2

1-125

MC 63-4

C9TWO ;

~eCOSE+COSE"COSE+SINE SINE
1-eCOSE

!

9= [(coss-—.) SIN E - (cos E’-.) sms] -;"-

f =

STORE
?'
OUTPUT

C9ACC=0 c9Acc=0 }YES

—

YES NO

STORE
AtIN AC

C9THR |

SIN E COS E’— SIN E'COS E
(I—OCOSE) (1— e COS E)

r’ = a(1=-eCOS E")

o= COS E"+C0S E” COS E+ SIN E SIN E”
1-e Q0S E’

O e

FIGURE 1-3. C9RVTH SUBROUTINE FLOW CHART (Sheet 3 of 4)

1-126

, e SINE’
TANY = F——

1-—-e

ERROR
RETURN

UTATAB
TO CALCULATE

’,

b4

STORE
OUTPUT
>, >
LA S ¢

At IN THE AC

MC 63-4
CALCULATE
Vo= 7 +
’ >
g v
STORE
OUTPUT
T'ANDV’
C9ACC=0 YES
NO |
STORE
At IN AC
|
RETURN

FIGURE 1-3. CIRVTH SUBROUTINE FLOW CHART (Skeet 4 of 4)

1-127

MC 63-4

1.3.20 SOLUTION OF KEPLER'S EQUATION SUBROUTINE (C9ASKE)

C9ASKE, called from the SOS library tape by LBR U7ASKE, solves the
equation M = E - E sin E for E, Sin E, and Cos E, given M and e.

1.3.20.1 Input Requirements

The eccentricity of orbital ellipse e, and the mean anomaly at time t, M,
both in floating-point, must be available in two consecutive locations. The
address of the first of these locations is specified in the address of the first
word of the calling sequence to CO9ASKE. C9ASKE must have access to the
U1SICO subroutine.

1.3.20.2 Output Requirements

E, Sin E, Cos E, and the eccentric anomaly at time t, all in floating-point,
are stored in a 3-word output block. The address of the first location of the
block is specified in the decrement of the first word of the calling sequence to
C9ASKE.

1.3.20.3 Method

. . i . i
E1+1=E1_ E —eSmiEl)-M .

1 - eCos (Ei)

Iteration is terminated when convergence to 0. 0001 degrees (= 0.000017
radians) has been reached or when the maximum number of iterations has been
performed. Presently this number is set to ten.

1.3.20.4 TUsage

a) Calling Sequence:

alpha TSX C9ASKE, 4
+1 PZE L (input),, L (output)
+ 2 Error return
+ 3 Normal return

1-128

b)

c)

d)

e)
f)

g)

1.3.21

MC 63-4

Error Conditions:

1) A return to alpha + 2 with 1 in the decrement of location C9ASKE
indicates that the AC overflow indicator or the divide check indi-
cator on the IBM 7094 console was turned on during execution of
C9ASKE.

2) A return to alpha + 2 with 2 in the decrement of location COASKE
indicates an error return from the U1SICO subroutine.

3) A return to alpha + 2 with 3 in the decrement of location C9ASKE
indicates that convergence was not accomplished in the maximum
number of iterations (presently ten) allowed.

Storage Required—10410 including constants and temporary storage,

but excluding the U1SICO subroutine.

Time Required—(maximum number of IBM 7094 machine cycles,
excluding the subroutine U1SICO): 141810.

Accuracy—26 significant bits.
Exempt symbol—C9ASKE.

Library Identification—LBR TUTASKE.

SOS LIBRARY TAPE WRITER PROGRAM (LBRWR)

LBRWR prepares a library tape of utility subroutines for use with Mercury
SOS. The flow chart for LBRWR is shown in Figure 1-4.

1.3.21.1 Input Requirements

The Library Tape Writer program requires a squoze tape on A5 as input.
Each subroutine must be a separate file, and two adjacent EOF marks must be
present to signify the end of the input tape. The squoze tape may be prepared
by SOS by compiling the utility routines, in order, and stacking the squoze on
tape (SSW #6 up). SOS currently writes the EOF between jobs automatically.

1-129

MC 63-4

The input deck to prepare a squoze tape consists of:

a) JOB card (columns 16-21 containing the symbol destined to be used
with the LBR card to call in that subroutine)

b) CPL card

c) Symbolic deck of first utility subroutine

d) Blank card

e) (a) through (d) for each of the remaining subroutines
f) PAUSE card

The current version of SOS expects a maximum of 26 utility routines.

1.3.21.2 Output Requirements

LBRWR produces a library tape on A4. The tape is composed of two files:
the first file is empty; the second file contains one BCD ID record followed by
binary records (maximum of 256 words each) for the utility routines.

1.3.21.3 Method

LBRWR writes an EOF followed by a 1-word record in BCD on the output
tape. This record identifies the tape as a library tape. LBRWR then edits the
utility subroutines and writes the edited squoze information as the remainder
of the second file on the output tape. Upon sensing a double EOF on the input
tape, LBRWR writes an EOF and rewinds the output tape.

1.3.21.4 Usage (Operator's Procedures):

a) Ready SOS on Al.

b) Ready blank tapes on A2, A4, Bl, and B2.

c) Ready input squoze tape on A5.

d) Ready LBRWR program in card reader.

e) Set sense switch #1 down.

f) Press LOAD TAPE button.

g) Program final stop is at 14028, with the library tape rewound on A4.

1-130

MC 63-4

LBRWR STOCD
BEGIN [
0
REWIND OUTPUT TAPE, TAKE CORE
TURN OFF EOF pREsssTSOTPART SAVE XR4
AND REDUNDANCY
INDICATORS TO RESTART
‘ NUMCD *
WORD COUNT
TURN ON OF RECORD
sL 1 + XR4
|
CLA}
RDCD MOVE ONE WORD
OF RECORD TO
OUTPUT BLOCK
| |
WEF OUTPUT TAPE, \ vEs
WRITE 1-WD ID SUTPOT
RECORD ON BLOCK FULL
OUTPUT TAPE.
DELAY o
!
YES
(REDUNDANCY
NO
|
NO DONE MOVING
e (e)
Y
CDFIN | ES

RESTORE XR4

FIGURE 1-4. LBRWR PROGRAM FLOW CHART (Sheet I of 5)

1-131

MC 63-4

GOTBL
WRITE 2-WD ID
TURN ON
RECORD ON SL 1
OUTPUT TAPE.
10CPX ~ 1ST WD = BCD1 \
JOCPN2, 2ND WD = I0CPF
0- TSTX RDCD
255 > XR2, Y BLANK CARD
TURN ON SL3
ANY HE
LOSTR ¥ AD
ANY MACRO
< RDCD) SKELETONS
INITIALIZE
1 NO. OF
HEADS INITIALIZE
STOCD '—— NO. OF
MACRO
j < RDCD > SKELETONS
SAVE $0S
QUANTITIES
FROM PREFACE
OF SQUOZE DECK.
6-CHAR JOB ID STOCD
-+ BCD1
DONE MACRO
HAVE TEXT NO SKELETONS
WITH COMMENTARY DONE WITH HEAD
b ADRCX | padluls INTRODUCTION
COMPUTE COMPUTE N\ NO
23+ H+ 2D+ FN 23+ H+ 2D+ FN ANY MACROs
+ COMTX + NCMTS J SXA4 Yy YES
— I YES INITIALIZE
= sxa2_| NO. OF
SAVE IN INITIALIZE INTRO. WDS
LOCN NO. OF
TOTAL MACROS F——

DIV i $TO25 *"'__— (RDCD >

>
TOTAL
6)TAL+TSS—- 29—— 377> ACp (RDCD >

sToY { 1

NO
ACp = 10CPFp (DONE MACROD——

YES

DONE INTRO

FIGURE 1-4. LBRWR PROGRAM FLOW CHART (Sheet 2 of 5)

1-132

DODIC

ANY ANY NON- NO
DICTIONARY COMMENTARY TEXT }——
SXAS YES THNK3 YES
INITIALIZE INITIALIZE NO.
FOR NO. OF OF WDS OF NON-
DICTIONARY COM TEXT

——

RDCD

1

ANY TEXT WITH
COMMENTARY

(o)
=

ANY FOOTNOTES

SXA6 YES

INITIALIZE NO.
OF FOOTNOTES

YES

ANY TEXT WITH \ NO
COMMENTARY

RDCD INITIALIZE NO.
OF TEXT WDS
] —y

(o) (o
(

!

)
o)

DONE
FOOTNOTES

TURN ON sL1,
XR2+ 1- XR2

DONE
COM. TEXT

FIGURE 1-4. LBRWR PROGRAM FLOW CHART (Sheet 3 of 5)

1-133

MC 63-4

~:XR2+ 256 » XR2
- IOCPN2D

PREV *

INITIALIZE
IDCD2 +
XR2

BKA ‘

IOCPN2 -
NEXT WORD
OUTPUT
BUFFER

!

TRCV

NO
(SL 3 ON HEDUNDANCY

YES

‘ NO

XBBLK |

OUTPUT
BUFFER TO
OUTPUT TAPE

REINITIALIZE
SELECTION OF
OUTPUT
BUFFERS

LL 3 BUFFERS \ YES

(T

NO

REINITIALIZE
XR2 TO USE
BUFFER 1
AGAIN

SXAXB

SAVE XR2
TO CHOOSE
OUTPUT

BUFFER

YES

NO

PRES

INITIALIZE
XR2 &
LOCN PREV

TSTX: 0)

TSTS2

SL2 ON)

YES

10CDX -

I0CPN2,
XR1- TSTX
XR2 + 1 - XR2

FIGURE 1-4. LBRWR PROGRAM FLOW CHART (Sheet 4 of 5)

1-134

SAVE XR4,
DELAY ON
CHANNEL A
’ ouT
YES WEF & REW
(: EOF OUTPUT
TAPE
NO
GOON
CHOOSE &
CLEAR
PROPER
BUFFER
READ ONE
RECORD FROM
INPUT TAPE
& DELAY
‘ DONE
READ NEXT
EOF YES RECORD INTO
SAME BUFFER
ELAY
o &l)l A
Y
(SL 1 ON) ES

CALLT i NO

SAVE CHECKSUM
& WORD COUNT
OF RECORD

1

WORDCOUNT:;\

iaé

COMPUTE
CHECKSUM
& COMPARE

REDUNDANCY

SV4CD

RESTORE .XR4

STOP
PRESS START
TO IGNORE

MC 63-4

NO

FIGURE 1-4. LBRWR PROGRAM FLOW CHART (Skeet 5 of 5)

1-135

MC 63-4

Section 2

SIMULATION PROGRAMS

Simulation programs pretest the Project Mercury Programming System in
an environment which approximates a real-time mission. These programs are
divided into three categories: (1) data preparation programs, (2) simulated
input/output control program (SIC), and (3) open and closed loop programs for
project personnel training.

2-1

MC 63-4

2.1 OBSERVER PROGRAM (OBSER)

Observer produces a set of pure radar observations of the Mercury space-
craft. These observations are degraded to simulate random radar and trans-
mission errors and are then reformatted by the Selector and Shred programs.
Following this, the observations are used as input to the simulated input/output
control (SIC) program which feeds data to Mercury monitor in simulated real
time.

The flow chart for Observer is shown in Figure 2-1.

2.1.1 Input Requirements
A functional description of the possible inputs to Observer is given below.

a) Station Characteristics Tape (prepared by UOSTCH)—contains position
of site and type of radar.

b) Space Technology Laboratories (STL) Tape—loaded from column
binary cards containing position/velocity vectors in B-GE coordinates
for a simulated launch. This powered flight data is provided by STL.

c) Cards (read from the on-line reader)—specify all the parameters for
a run. The sequence of cards is:

1) Four parameter cards containing spacecraft characteristics.

2) An identification card.

3) A card, or cards, specifying the manner in which a table of
position/velocity vectors is to be generated. There are four ways

in which this can be done:

(a) Converting STL launch data in B-GE coordinates to inertial
coordinates.

(b) Numerical integration (for free flight) starting from a given
position/velocity vector.

(c) Extending a previously generated table by firing posigrade
rockets at a specified time and then integrating.

(d) Extending a previously generated table by firing retrorockets
at a specified time and then integrating.

2-2

2.1.

MC 63-4

4) A set of station cards, each identifying a particular radar site.
These cards control the reading of the Station Characteristics tape
so positional data from each site can be obtained. Radar pointing
data for each station card is calculated assuming that the space-
craft traces the path described in the table of position vectors.

5) An END card.

A typical set of cards for obtaining launch, orbit and reentry data for the
two Bermuda radars would be:

a)
b)
c)
d
e)
f)
g

h)
i)
)
k)

1)

2

Four parameter cards.

Identification card, identifying the run.

STL card indicating use of STL tape data for powered flight.
Station card for Bermuda Verlort radar.

Station card for Bermuda AN/FPS-16 radar.

New parameter card(s), if desired.

Execute posigrade (XP) card for extending flight by firing posigrade
rockets and going into free flight.

New station card(s), if desired.
New parameter card(s), if desired.

Execute retrograde (XR) card for extending flight by firing retrograde
rockets and returning to free flight for the reentry phase.

New station card(s), if desired.

END card.

Output Requirements

A listing of the possible Observer outputs includes:

a)

A binary tape (B5) containing in each record a table of position/velocity
vectors. If STL data is used, the first record contains an edited ver-
sion of the B-GE data; all other records contain data in inertial coordi-
nates. There is one record for each table generated in the Observer
program.

MC 63-4

b) A BCD tape (A8) for printing off line the radar observations made at
each station, a table of position/velocity vectors, and a table of sub-
vehicle positions.

¢) A binary tape (B6) for input to the Selector program, containing the
radar observations made at each station. This is the only optional
output and is not used unless radar reports are actually calculated.

2.1.3 Method

Observer first calculates a set of position/velocity vectors and then (using
only the position vectors) calculates radar pointing data from specified stations
to the path described in the vector table.

As indicated by the selection of cards, the vector table is obtained by:

a) A direct conversion of STL powered-flight data from B-GE-to-inertial
coordinates. This provides a one-to-one correspondence of supplied-
to-calculated vectors. The table usually provides points for several
seconds after sustainer engine cutoff (SECO).

b) Numerical integration by Cowles method, or Runge-Kutta method, using
NOCPNI, the same integration program used in the Mercury Program
System,

c¢) Interpolating for an initial rv (position/velocity vector) by referring to
a previously calculated table of vectors (then in memory) using a given
time. The velocity vector obtained is then incremented by the velocity
of the posigrade rockets; the position vector is left unchanged. With
this new rv corresponding to the rv after the firing of posigrade
rockets, a new table of vectors is calculated using numerical integra-
tion.

d) Obtaining an initial rv and using the retrofire program R6ATAO to
calculate an rv following the retrofire period. This rv is used as the
origin of a new table of vectors obtained by numerical integration. In
addition, a set of position/velocity vectors is obtained by linear inter-
polation corresponding to the period during which the retrorockets are
fired.

The following steps are taken for each of the stations:
a) The corresponding station characteristics block is read in from tape.
b) The distance between each point in the table and the station is calcu-

lated until the first point is reached where the distance is less than the
indicated value for the station's maximum range.

2-4

c)

d)

e)

MC 63-4

By linear interpolation between the two consecutive table entries yield-
ing distances greater than and less than the station's maximum range,
a starting time is obtained which may be rounded to a multiple of .1
sec, 1 sec, or 6 sec.

Proceeding from the starting time, and using time increments based
on the radar (usually six seconds or .1 second), position vectors are
interpolated from the table entries by using six-point Lagrangian in-
terpolation. The range, azimuth, and elevation to the station are cal-
culated for each of the calculated vectors. When the calculated range
again exceeds the station's maximum range, the Observer program
calculates only the ranges to the points in the table. (Observer no
longer interpolates for extra values based on the smaller time incre-
ment of the radar observations.) When the range is again less than
the station's maximum range, the process is repeated. This process
is continued until the last value in the table of vectors is tested.

At this point a new station is used and the entire process is repeated.

2.1.4 Usage

Q

¥R K K K K OF K X X K K X K K X X

*

In its present state, the Observer program is self-contained except for its
part in the SHARE Operating System (SOS).

Parameter Cards—Format and Quantities (all have P in column one)

AR
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
4
4

COLUMN QUANTITY FORMAT UNIT

3-17 Pitch Angle SX. XXXXXXXX ,SXX DEG.
19-33 Cant Angle SX. XXXXXXXX,SXX DEG.
35-49 Thrust of Retros SX. XXXXXXXX, SXX LBS.
51-65 Greenwich Hour Angle SX, XKXXXXXXX, SXX RAD.
72-72 Card Number (1)

3-17 Orbit Weight SX. XXXXXXXX, SXX LBS.
19-33 Reentry Weight SX., XXXXXXXX, SXX LBS.
35-49 Retrograde Weight SX, XXXXXXXX, SXX LBS.

51-65 Retro Burn-out Weight SX, XXXXXXXX, SXX LBS.
72-72 Card Number (2)
3-17 Post Escape Rocket Weight SX, XXXXXXXX,SXX LBS.

19-33 Spacecraft Area SX XXXXXXXX, SXX SQFT
35-49 Roll Angle SX. XXXXXXXX, SXX DEG.
51-65 Yaw Angle SX ., XXXXXXXX, SXX DEG.

72-72 Card Number (3)
3-17 K.Mute, Density Mutila- SX, XXXXXXXX, SXX NONE
tion Coff.
72-72 Card Number (4)

MC 63-4

IDENTIFICATION CARD

* 1-2
* 3-3
* 4-72

ID

Blank

Any Desired HOL. Informa-
tion

CARD FORMAT FOR STL INPUT

1 1-2
4-5
7-21

41-41

43-43

ID

STL Tape File Required
Time of Launch (GMT)

RV Table Wanted -1

Output GMT - 0, Elapsed -1

CARD FORMAT FOR RV INPUT

1-2

4-18
20-34
36-50
52-66
68-68
70-70
72-12

1-15
17-31
33-47
49-53
55-56
58-58
60-63
65-68
70-70
72-72

R T E R
DN NN DNDNDN F R

RV

Time of Launch (GMT)

X — Vector

Y — Vector

Z — Vector

RV Table Wanted - 1

Output GMT - 0, Elapsed -1
World Map Wanted - 1

VX — Vector
VY — Vector
VZ — Vector

Anchor Time GMT
Integration Interval

* M/S Code 1-Sec., 0-Min.

Back Integration

Forward Integration

Drag Not Used -1, Used - 0
Runge-Kutta Used - 0,
Cowell -1

XX HOL.

XX HOL.

XX INT.

SX, XXXXXXXX, SXX MIN.
X INT.

X INT.

XX HOL.
SX, XXXXXXXX, SXX MIN.
SX, XXXXXXXX, SXX M. U.
SX . XXXXXXXX, SXX M. U.
SX, XXXXXXXX, SXX M. U.
X INT.
X INT.
X INT.
SX, XXXXXXXX,SXX M. U.
SX, XXXXXXXX,8XX M. U.
SX, XXXXXXXX,SXX M. U.
XXXXX *
XX *
X INT.
XXXX *
XXXX *
X INT.

X INT.

MC 63-4

EXTEND RETRO CARD

* 1 1-2
* 4-4
* 6-6
*

%k

*

*

*

*

k

* 8-8
* 10-24
* 26-27
* 29-32
* 39-39
* 41-41
* 43-43
* 45-59
* 61-61
* 72-72

XR XX HOL.
Drag Used - 0, Not Used -1 X INT.
No. of Rockets Fired X INT.
1 - No. One

2 - No. Two

4 ~ No. Three

3 - No.S One and Two

5 - No.S One and Three

6 - No.S Two and Three

7 - No.S One, Two and Three

* M/S Code 1l - Sec., 0 - Min. X INT.
TTF Retro No. One, Elapsed SX.XXXXXXXX,SXX SEC
Integration Interval XX *
Forward Integration XXXX *

B - By Pass Interp., Blank

Interpolate X HOL.
RV Table Wanted - 1 X INT.
Output GMT - 0, Elapsed -1 X INT.
Long. of Impact SX, XXXXXXXX, SXX RAD.
World Map Wanted - 1 X INT.
Runge-Kutta Used - 0,

Cowell -1 X INT.

EXTEND POSIGR. CARD

1 1-2

4-6

6-6

8-8
10-24
26-27
29-32
39-39

41-41
43-43
51-61
72-72

XP

Drag Used - 0, Not Used - 1
No. of Rockets Fired 1, 2 or 3
* M/S Codel - Sec., 0 - Min
TTF Rockets, Elapsed
Integration Interval

Forward Integration

B - By Pass Interp., Blank
Interpolate

RV Table Wanted - 1

Output GMT - 0, Elapsed -1
World Map Wanted - 1
Runge-Kutta Used - 0,

Cowell -1

MC 63-4

STATION REQUEST CARD

* CARD COLUMN QUANTITY FORMAT
* 1 1-1 S Card Code X HOL.
* 3-4 Desired Station, No. of XX INT.
* 6-20 Max. Range of Radar at Sta. SX.XXXXXXXX,SXX SEC.
* 22-36 No. of Seconds Betw. Obser-

vations SX., XIXXXXXXX, SXX SEC.
* 38-38 O - No Rounding of Interpo-

lated Time, X INT.

1 -~ Round to Nearest .1 SEC

2 ~ Round to 1 Second

3 - Round to 6 Seconds
40-40 Output GMT - 0, Elapsed -1 X INT.
42-42 On Last S Card Only,

0 - No Other

S Cards Are Expected, 1 -

Add. S
* Cards May be Used X INT.
* I1=1,33
* END CARD Col. 1-3 END

* ¥ * K ¥

*

TYPICAL SET UP FOR DATA CARDS

P -3.40000000,+01 +1.35000000,+01 +1.08260000,+03 +0.00000000,+00 1 MA-

P +3.03000000,+03 +2.65294000,+03 +2.79258000,+03 +2.94449000,+03 2 MA~

P +3.03600000,+03 +3.02700000,+01 +0.00000000,+00 +0.00000000,+00 3 MA-

P +3.00000000,+01 4 3XD

ID MA9 3 X DRAG

RV +0.00000000, +00 +3.44078309, -01 -8.07763621,-01 +5.27785236,-01 1 1 1IMA9
+8.62429042, -01 +4.66370198, -01 +1.52504481, -01 6 10 3 204301MA9

S 01 +3.
S 02 +3.
S 03 +3.
S 04 +3.
S 05 +3.
S 06 +3.
S 07 +3.
S 08 +3.
S 09 +3.
S10 +3.
S 11 +3.
S12 +3.
S 13 +3.
S 14 +3.
S 15 +3.
S 16 +3.

2-8

00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6,
00657150, -01 +6.

00657150, -01 +6

00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 3 1
00000000,+00 31

.00000000,+00 31
00657150, -01 +6.
00657150, -01 +6.
00657150, -01 +6.

00000000,+00 3 1
00000000, +00 31
00000000,+00 31

MC 63-4

7 +3.00657150, -01 +6.00000000,+00 3 1
8 +3.00657150, -01 +6.00000000,+00 3 1
9 +3.00657150, -01 +6.00000000,+00 3 1

1 +3.00657150, -01 +6.00000000,+00 3 1
2 +3.00657150, -01 +6,00000000,+00 3 1

S1

S1

S1

S 20 +3.00657150, -01 +6.00000000,+00 3 1
S2

S2

S

23 +3.00657150, -01 +6.00000000,+00 3 1
S 24 +3.00657150, -01 +6.00000000,+00 3 1
ID MA-9 3X Drag Reentry

XR 7 1 +1.22362000,+05 4 8888 1 1 +3.20355181,+00 1 MA-
END

OPERATING INSTRUCTIONS

* TAPES

¥ Al SOS Sys. Tape

* A2 Blank (SOS)

* A3 Job Tape

* A8 BCD Output - RV Table, World Map, Observations

* Print Under Program Control

* Bl Blank (SOS)

* B2 Blank (SOS)

* B5 Blank Intermediate

* B6 Blank Binary Output, Observations

* Format per 8 Word Record

* Word 1 - Address, Internal Sta. Number

* Decrement, Set Number

* Words 2 and 3

* - Time Asso. With Observations. BCD Seconds
* Word 4 - GMT for Observation. Fixed Binary Seconds
* Word 5 - Elapsed Time for Observation. Floating Binary
* Word 6 - Slant Range. Floating Point Binary

* Word 7 - Azimuth Floating Point Binary

* Word 8 - Elevation. Floating Point Binary

* B7 Station Characteristics Tape Input

* Sense Switches

*

SSW No. 4 Down on-line Print of A8

MC 63-4

REWIND TAPES
0+ PAGENO
0- SETNO
0 - NOPCRD
0-» TFORSR
1 LASNO

PARMC

READ
INPUT
CARD

!

INIT. FOR STORAGE
OF S CARDS
BUFSV3 (A) »
BUFSV2 (A)

WAS CARD A
PARAMETER (P)
CARD

PARMC 3
WHICH
(P) CARD > \ 4
NO. (P) CARD NO. j
2
r ‘3 PARMC 6
P CARD *3 P CARD #4
STORE INPUT STORE INPUT
NOPCRD + 1 » NOPCRD NOPCRD + 1 » NOPCRD

PARMC 2
P CARD *2

STORE INPUT
NOPCRD + 1 > NOPCRD

PARMC 1
P CARD "1

STORE INPUT
NOPCRD + | » NOPCRD

PARMC 4

NORCRD : 4

>
T PARMC S

COMPUTE DRAG
AND RETRO-
FIRE CONSTANTS
(T6ATAO}

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 1 of 7)

2-10

MC 63-4

IDCRD
™~ < ERROR
NORCRD : 4 FOUR PARAMETER 4..@
J CARDS HAVE NOT
N BEEN READ
STORE IN
1S 1T AN \ YES ID AREA FOR
IDENTIFICATION PRINTING
CARD / HEADING ON
EACH PAGE
NO
{ RNC
P A
TENDC READ INPUT CARD
15 1T AN WEFOT
END
CARD YES WRITE EOF ON
OUTPUT TAPES
REWIND INPUT
TRPC AND OUTPUT TAPES
IS IT AN
‘ CARD READ INPUT
CARD MUST
BE SECOND
RV CARD
{ INTSR DCMIC
NOCPNI \
CONVERT TIME!REFERENCES
INTEGRATE FOR POSITION TO FIXED POINT DEC MICRO
AND VELOCITY VECTORS SECONDS, AND REPLACE
STORE IN TNINT1 ORIGINAL UNITS
TABLE
PRID WINT MIN
PRINT PAGE HEADING CAL. NO. OF

ENTRIES IN THE

(P) CARDS’ INPUTS
TNINTY TABLE CONVERT At

+ 1> SETNé
INPUT RV OR BURNOUT SETNO > SET

1
COMPUTED DRAG CONST. [PAiiﬁ%;o ? WRITE TNINT! TO FLOATING
IF REENTRY, PRINT TABLE ON TO POINT MIN

1P, T6ATAO TABLE TAFE BS

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 2 of 7)

2-11

MC 63-4

COMPUTE
QUANTITIES
FOR BCD
OUTPUT

ON TO TAPE A
WRITE THE ORBIT
TABLE, R & V
MAG., AZIMUTH,
GAMA, LON, LAT,
HEIGHT

RSTC

£

- k TFORSR : 0 J

READ INPUT CARD

STORE INPUT
INTO
SCRDSY + i

< TFORSR # 0

STBERG
BRING INPUT READ DESIRED STATION INITIALIZE
CARD STORED IN DATA FROM STATION FOR
SCRDSV + i TO BUF CHARACTERISTICS R, AE

TORAGE BLOC TAPE (B7) CALCULATIONS
Y TSTAC [
Nof 1517 A YES RESET TIME
B s STORE CONTENTS
\ CARD OF S CARD

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 3 of 7)

2-12

C
o O(:

IDCRD

C NORCRD : 4

v

ERROR
FOUR PARAMETER
CARDS HAVE NOT

> BEEN READ
STORE IN
IS 1T AN \ YES ID AREA FOR
IDENTIFICATION - PRINTING
CARD / HEADING ON
EACH PAGE
NO
RNC
- AD INPUT CA
| TENDC READ INPUT CARD
IS 1T AN WEFOT
END
CARD WRITE EOF ON
OUTPUT TAPES
NO REWIND INPUT
| trPC AND OUTPUT TAPES
AN
CARD READ INPUT
CARD MUST
BE SECOND
RV CARD
{ INTSR DCMIC
NOCPNI \

INTEGRATE FOR POSITION
AND VELOCITY VECTORS
STORE IN TNINTI

TABLE

CONVERT TIMEIREFERENCES
TO FIXED POINT DEC MICRO
SECONDS, AND REPLACE
ORIGINAL UNITS

=
(@]

[=2]
Iy
W

PRID WINT MIN

PRINT PAGE HEADING CAL. NO. OF j

(P) CARDS’ INPUTS ENTRIES IN THE

1 6
INPUT RV OR BURNOUT SE;:ggNo‘;S,EIN TNINT1 TABLE CONVERT At
COMPUTED DRAG CONST. [™*] PAGENO WRITE TNINTI TO FLOATING
IF REENTRY, PRINT TABLE ON TO POINT MIN
1P, TSATAO TABLE TAFE B5
FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 2 of 7)

2-11

MC 63-4

COMPUTE
QUANTITIES
FOR BCD
OUTPUT

ON TO TAPE A
WRITE THE ORBIT
TABLE,R&V
MAG., AZIMUTH
GAMA, LON, LAT,
HEIGHT

RSTC

—z(TFORSR : 0) ‘

Nd

READ INPUT CARD

STORE INPUT
INTO
SCRDSV + i

TFORSR # 0

RSTCS
i=0)
RSTC4 STBERG
BRING INPUT READ DESIRED STATION INITIALIZE
CARD STORED IN DATA FROM STATION L. FOR
SCRDSV +i TO BUF CHARACTERISTICS R, AE

NO

-

2-12

TORAGE BLOC TAPE (B7) CALCULATIONS
' TSTAC
IS 1T A YES RESET TIME
s STORE CONTENTS
CARD OF S CARD

-
\

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 3 of 7)

=
Q)
=1}
[J%]
1
N

RANGE

RELOCATE X, Y, Z
FOR RANGE
CALCULATION

!

ASCSR1

COMPUTE
RANGE (AND
ELEVATION)

\
Q ! COMPL)

MODIFY
ADDRESS OF
X, Y, Z

]

HAS LAST ENTRY
IN TNINT1 BEEN
USED

!

STORE SLANT RANGE

YES

>
(COMPUTED RANGEN
(STATION’S MAX.)

WAS FIRST
ENTRY IN TNINT!

TABLE USED FOR
CALCULATION

CURRENT T|ME (GMT) »

C MAX. TIME (TK) USED IN

' INTERPOLATION
‘ LINTP

CALCULATE STARTING TIME (fs) FOR

STATION’S R, A, E AS A FUNCTION
OF COMPUTED RANGE,
STATION MAX., CURRENT TIME

- CURRENT TIME
INCREASED BY At

PSs1

G\SS NO. + 1> PASS N(D

)

— SLT
1
MUST 1+ BE A
MULTIPLE OF 60 -t - 10° » tg
SOME UNIT

AT = TIME ' YES
BETWEEN SLT1
RADAR
REPORTS

ROUNDf T0
A MUL. OF .1 SEC

\])

60t 5
—2+1}.1-10 -t
v

I

SLT2

ROUND t
A MUL. OF 1. SEC

TO

(60t +1)-10°5¢
s 3

1

SLT3

ROUND t_TO
A MUL. OF 6 SE

oY

60 +1 . 6-10°
3

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 4 of 7)

2-13

MC 63-4

O

t TOO LARGE / HC \
INTERPOLATE / ADN \
FOR X, Y, Z
A, TIME t ADD LOCAL
STATION
SETR DISTORTIONS
SET UP DATA Y TREP
BLOCK FOR R, A, E
COMPUTATION CONVERT GMT TO
FIXED PT. SEC. AND
‘ RA ELAPSED TIME TO
FL. PT. MICRO-SECONDS
AlLSCl A FOR BINARY OUTPUT

COMPUTE RANGE,
AZIMUTH ELEVATION)

BY OPTION CONVERT
) EITHER GMT OR

ELAPSED TIME
L TK ‘ TO BCD

>
COMP2 y _WRBCD
< FORMAT BCD OUTPUT
RANGE : STATION'S MAX. WRITE OUTPUT ONTO
TAPE A8
Y~ REPHA
4 WRBIN
SET INDEX REGISTER
TO.GET NEXT SET FORMAT BINARY OUTPUT
OF X, Y,Zt WRITE OUTPUT ONTO
TAPE Bé

‘ t tAT >)
E S

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 5 of 7)

2-14

IS IT AN
STL CARD

IS IT AN

MC 63-4

HB

A\

READ STL DATA FROM TAPE
A7, WRITES EDITED VERSION
ON TAPE BS5, CONVERTS DATA

TO INERTIAL COORDINATES

PLACE IN TNINT1

XR CARD

NO

IS IT AN

2+ K

1-K

XP CARD

avaya

NO

XRP

STORE INPUT
FOR XR OR XP
CARD CONVERT
TIMES TO SECONDS

BY PASS

XRP1

/ HC

INTERPOLATE
FOR R, V AT
DESIRED FIRING
TIME t

XRP2
U Yt

INTERPOLATION

PLACE FIRST ENTRY

IN THE TNINT1
TABLE IN THE
INTERPOLATION
OUTPUT AREA

POS1

%

CALCULATE RV AFTER
POSIGRADE FIRE R =R,

Mpvp
-\7 =V 1 Al 1
0| T3y

?

COMPUTE TIME TO
FIRE FOR EACH DESIRED
RETRO, AND RETRO

PRINT-OUT INFO.

[R6ATAQ \
\

COMPUT

POS/VEL VECTOR
AT BURNOUT

_\

/ CORV

UPDATE
POS/VEL TP
NEXT WHOLE

SECOND

FIGURE 2.1. OBSERVER PROGRAM FLOW CHART (Skeet 6 of 7)

2-15

MC 63-4

?

POS12
SET UP INPUT
FOR NOCPNI ()
\ Y _ERROR
/ NocPNI \ PRINT ON LINE
INTEGRATE FOR LOCATION
POS/VEL OF THE ERROR
VECTORS DUMP
.ﬂ ¥ RETR2
SET UP INPUT
FOR NOCPNI
. ”
/ NOCPNI \
INTEGRATE FOR
POS/VEL
VECTORS
ADRTM
/ BRETTC \
IS LONGITUDE NO
OF IMPACT WITHIN - REFINE DESIRED
ACCURACY REQUESTED \ FIRING TIME t

REPLACE BACK INTEG.
WITH VALUES FROM A
LINEAR INTERPOLATION
BETWEEN PRE- AND
POST-RETROFIRE RV’S

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 7 of 7)

2-16

MC 63-4

2.2 HB SUBROUTINE

HB assumes the STL launch data to be on a binary tape in a variable num-
ber of 24-word records, followed by an end-of-file. The program converts
launch (powered flight) data from B-GE coordinates in fixed-point STL units to
inertial coordinates in floating-point Mercury units. The output is placed in
the integration table (TNINTI). An average mean (At) is computed and used as
the base value for this integration table.

The flow chart for HB is shown in Figure 2-2.

All records from the binary input tape are read and a check is made of the
12-bit folded checksum. The folded checksum constitutes part of the first word
of each record. Since each item of STL data is a 24-bit word, the 12 bits in

positions 24 through 35 are always zero. Items 2 through 10 are the values HB
uses.

2.2.1 Input Format

1. Logical word from column binary card

2. Discreet quantities

3. ¢
4 n
5 £
6. Tg
7 £
8 n
9. £

10. Special B-GE checksum

11-24, Not used by HB

2-17

MC 63-4

2.2.2 Output Format

TNINT1 + ®©
+1 At + 7 X
+ 2 T0 + 8 Y
+3 T, +9 Z
+ 4 X +10 X
+5 Y
+ 6 Z

2-18

SAVE REGS. FOR
RETURN TO
MAIN PROGRAMS

’....________._...___.-

AL = .464 SEC.
ToL = TIME OF
LAUNCH

K 1S CHOSEN SUCH
THAT (- 27< o< 277)

TL=1'°L+AL
¢°= TL (L)+A°+>&GB— K2r

1

0= + (- 1At

cosf — sin
M= Ene coseoj

PICK UP COMPUTE
DATA CUT- cos 8, sin
°§f.ﬁ?a'§JrT§é’“ SET UP CONVS(RAS‘ION
- MATR F1=.955765
r~ [F—————- F2=1.022885
SET UP LINEAR (F1)
YES R AL ND OR VELOCITY (F2)
CHECK A
CONVERSION
TAPE RECORD. NYERSIC —
EOF X, [osO—:sind
i NO *_______ Y, =|sinf cos6}[O {F1
z, |o o ||
OUT THAILING Fi OR £3 70 _— -
ZEROS ON EACH CONVERT TO X; [pos@—sin
WORD OF RECORD MERC BASE Y; =[sinf cosbliO [F2
l i z, o o |h

IS TIME (tn) YES M OR
ASSOCIATED SKIP THIS c-'rvoE TVAEBCLTE:
WITH Rgcono RECORD TNINTI
i NO
NO IS THIS
THE v
IStn=1t _, COMPONENT
OF THE VECTOR
=4 YEs

COMPUTE THE
NUMBER OF ENTRIES
IN OUTPUT TABLE

PLACE COMPLETE
VECTOR INTO
TNINTY

C(TNINT) = + o
CTNINTI+ D= At
C(TNINTI + 2) =1,

WHERE t;= T +AL
C(TNINT1 + 3)= TN WHERE
TN=To_ +A L+ (N-1) XAt

—0

FIGURE 2-2. HB FLOW CHART (Sheet 10f2)

2-19

MC 63-4

V= (3(+ Yo) 2 (Y - Xw) 2+ 22

HR=\/ X2+ Y2+ 22 R

HAS
NO f TOWER SEPARA-
TION OCCURRED
YET?

COMPUTE

VR= (5(+ Ym)2+
(Y - xw)2+ 22

RELATIVE
VELOCITY

!

BY CHECKING
DIFFERENCES, DE-
TERMINE WHETHER

2-20

C RETURN)

FIGURE 2-2. HB FLOW CHART (Sheet 2 of 2)

! SECO HAS OC-
: CURRED AT THIS PT
|
-R |
ReRot+drv, | HAS YES | SET ENDING
_ R At SECO TIME OF
vev - TL’R i : OCCURRED TNINT1
I |
I
] HAS DATA
| WHAT IS CUTOFF
CUTOFF POINT BEEN RETURN
| CRITERION? SPECIFIED
|
|
| TIME VELOCITY HEIGHT
|
|
! HAS UNIT
! OF CUTOFF
| BEEN
] REACHED
} YES
| |
| HAS TOWER
SEPARATION
| OCCURRED
I YET?
PROVIDE YES
3 ADDITIONAL |
rv's. SET ENDING
TIME OF
| OUTPUT TABLE
(TNINT1)

i
u

C
[}
IS
IS

2.3 HC SUBROUTINE

HC performs a 6-point Lagrangian interpolation. It consists mainly of a
control program around the SHARE routine INTP2. If a 6-point Lagrangian in-
terpolation cannot be performed, a simple linear interpolation is executed.

The flow chart for HC is shown in Figure 2-3.

The input to the subroutine is the time of the desired position and velocity
vectors; output is the vectors corresponding to the time requested.

2.4 RAE SUBROUTINE

This subroutine applies errors to R, A, E's and prepares a profile tape and
a listing tape. The flow chart for RAE is shown in Figure 2-4.

2.5 RFBRAE SUBROUTINE

RFBRAE is an output routine. Its major purpose is to operate with station
characteristics information. The operation data consists of range, azimuth and
elevation. Azimuth and elevation data is converted to degrees; range data is
converted to yards. An option is incorporated in this routine which allows
printing this information on-line or on the listing tape. Errors can be intro-
duced in this routine due to local vertical, refraction and boresight corrections
by requesting specific values from the station. This interrogation is accom-
plished in the station characteristic block.

The flow chart for RFBRAE is shown in Figure 2-5.

Notes: This information pertains to Figure 2-5.

K = 1.161466225 x 1075

Ng: Modulus (N-1)-27th word of station characteristics block.
AX: Local vertical deflection—fifteenth word

Ag: Local vertical deflection—sixteenth word

Co: Boresight azimuth correction—thirty-third word

Cs: Boresight elevation correction—thirty-second word

D,: Inertial longitude at reference time—nineteenth word

2.6 RNRCRD SUBROUTINE

The RNRCRD subroutine reads the integration tape into storage. The flow
chart for RNRCRD is shown in Figure 2-6.

2-21

MC 63-4

PICK UP LOCATION

OF R, V TABLE AND

TIME FOR INTERPO-
LATED R, V. INITIAL-
IZE REFERENCES

\

DOES THE
REQUESTED TIME
LIE BETWEEN THE
BEGINNING AND
ENDING TIMES,
OF R, V TABLE

]

COMPUTE WHERE
TIME REQUESTED
LIES INv, v

TABLE

!

COMPUTE
TIME DIFFER-
ENTIAL
AT

1

NO ARE THERE
2r,v's BEFORE
R= (Rin- R)At+ R

THE REQUESTED

v

ERROR

' YES

NO ARE THERE
2r, v's AFTER
THE REQUESTED

r, v

Ai, YES
PLACE THE NEXT
COMPONENT

INTO WORK AREA
FOR (INTP2)
ROUTINE

=

< INTP2 >
=

NO
STORE HAS
RESULTS AND VELOCITY YES
PLACE NEXT COMPONENT BEEN RETURN
COMPONENT COMPUTED
INTO INTP2
WORK AREA

FIGURE 2-3. HC FLOW CHART
2-22

MC 63-4

WAS YES SET
REFRACTION INDICATOR
REQUESTED FOR RFBRAF
NO
RFBRAF
PREPARE
8'WORD e e . —— — G A Gt EE—. —— —
BLOCK FOR
PROFILE
1. INTERNAL
STATION NUMBER
2. TIME (BCD
SECONDS)
3. TIME (BCD
WRI
] gcch)OE%on SECONDS)
RD
4. TIME (BINARY
PROFILE SECONDS)

5. TIME (FLOATING-
POINT MILLISECONDS)

6. SLANT RANGE
{(MERCURY UNITS)

7. AZIMUTH (RADIANS)
8. ELEVATION (RADIANS)

FIGURE 2-4. RAE FLOW CHART

2-23

MC 63-4

RFBRAE

CONVERT AZIMUTH
AND ELEVATION
TO DEGREES AND
RANGE TO YARDS

ARE
CORRECTIONS
REQUESTED

NO

OUTPUT
R, A E

E’= Eg—'Ng Cot Eg

|

dE=E~-E

d

1
(|4E| 0.0005)f___.

dEg = dE

~ 1+ NgCsCZEgg

Eg+ dEg~ Eg

|

AE =/(A$)2 + (AN)2

ld
AE = Ag Cos Ag
—AX Sin Ag

FIGURE 2-5. RFBRAE FLOW CHART (Sheet 1 of2)

2-24

Ep= E9+AE

|

AA = Ach SinAg + A\ CosAg
Cot Eg—AE

RA'—
AA=AA+ Ag

R, = R
R=Rp
AR=Ap-Cy-Dy

ER=Epr-C5

OUTPUT
CORRECTED
R, A E

(RETURN)

FIGURE 2-5. RFBRAE FLOW CHART (Sheet 2 of 2)

2-25

MC 63-4

RNRCRD

&

READ ONE
RECORD INTO
TNINT1

END

\ ¥
OF ES »{ END
FILE
NO
|
§ HAS THIS ‘o
ES HAPPENED 3
TAPE CHECK TIMES ON
/ THIS RECORD
NO YES
READ THE
FIRST 8 ERROR
WORDS OF
NEXT RECORD
| |
N\ ves SET 8 WORDS
FOR NEXT
END OF FILE - RECORD —
INFINITY
No | |
BACKSPACE
ONE
RECORD

FIGURE 2-6. RNRCRD FLOW CHART

2-26

MC 63-4

2.7 RVCAL SUBROUTINE

This subroutine calculates position and velocity quantities for the simu-
lated trajectory. Input to the routine is a table of position and velocity vectors,
and the output consists of tables of values on a listing tape. During the orbit
phase, one table of orbital elements is also provided.

The equations used in obtaining the trajectory quantities and orbital ele-
ments appear on the following pages.

The trajectory table includes values for:
The six vector components (X, y, z, X, ¥ z)
Range magnitude (R)

Inertial velocity (VI)
Relative velocity (VR)
Inertial gamma ('yI)
Relative gamma (y R)
Inertial azimuth (AI)
Relative azimuth (AR)
Geocentric latitude
Geodetic latitude
Relative longitude
Inertial longitude

Altitude above an oblate or spherical earth.

The orbital element table includes:
Semimajor axis (a)
Mean motion (n)

Period (T)

2-27

MC 63-4

Eccentricity (e)

Eccentric anomaly (E)

Mean anomaly (M)

Inclination angle (I)

Argument of the ascending node (§2)
Argument of perigee (w)

Longitude of perigee (L)

True anomaly (T A)
Apogee (A)

Perigee (P)

Constants which are used in the equations:

Re (radius of the earth) = .999251039 Mercury units

Ve (rotational velocity of earth) = .058833543 Mercury time units
Trajectory Calculations

R =,\/)'<2 + y2 + z2

\& =.\/5c2 + 5,2 P

Xp SX+yW,, Yp = y-XW,, Zp =2

Vg =/ Gg? G+ ()

-1 XX + yy + z%

¥y = Sin RV
1
r . V
-1 R
v =Sin 1 —&
R RV,

2-28

MC 634
4 Rz -2zV_Siny
AI = Cos 1 1 I
(2 2
VICms'yI X' +y

1 Rep - 2Vp SinyR

VR Cos-yR A/x2 +y2

AR_= Cos

Latitudes, longitudes and heights are obtained by use of ASMSCP (see
MC 63-3).

Orbital Calculations

ecosE=R(VI)2-1

ae— R
“1-eCos E
23
n=a 2
T o 2m
n
. TrT.V
eSmE—V__a_

e =ﬁe sin E)2 + (e cos E)2

E=tan'1 e sin E
e cos E

M=E-esinE

* ;—9 —b._
R _{rxv-i

Soo Y st

2-29

MC 63-4

2-30

%
Cosi=R
VA

y

I-tan™ (—-Sm 1.)
COS 1

k3 b 3
Rx R
Sin Q=m, cos {1= - —X—Sinl

B -1/sin §)
I = tan (——COS Q)

1/2
* * 5
Sini-= <RX2+R 2)

cos E
R

P= T+, aSinEV

Sin E ;+(Ja(cosE—e)~

- 9 A\
R(1-e)!/2 (1-e31/2

ol

Cos w = Cos QPx + Sin Q Py
Sin w = -Cos 2Qx - Sin QQy

-1/ sin w
w =tan —_—
cos w

L= +w

TAztan_l%
r-P

A= l+e
a

(59)-=,

N

-R
e

P

MC 63-4

2.8 SELECTOR PROGRAM

The Selector program selects a flight profile for the spacecraft from a
given set of radar observations and applies the following parameters to the
radar reports:

a)
b)
c)
d)
e)
f)

)
h)

Begin-transmission mark
End-of-transmission mark

Valid or invalid transmission identification
Random error code

Pathological error code

Transmission error code

Transmission delay

Bias error code

The flow chart for the Selector program is shown in Figure 2-7.

2.8.1 Input Requirements

The following programs are used with the Selector program: RCDI,
GLFILE, DFLN, and CSTI.

A binary input tape (output from Observer program) is also required and
its format is as follows:

Word 1—address portion of the word contains the internal station
number of the radar installation.

Word 2 and Word 3—time of observation associated with radar read-
ings. The time is the total number of seconds in BCD.

Word 4—total number of seconds since midnight preceding launch, in
floating-point binary

Word 5—total number of milliseconds since launch, in floating-point
binary

Word 6—slant range, in floating-point binary

2-31

MC 63-4

Word 7T—azimuth, in floating-point binary

Word 8—elevation, in floating-point binary

Input cards (called station request cards) are required. These station
cards control the output and various identifications, tags, and delays which are
applied to the radar reports from the requested station. At least one input card
is required per station requested; however, there is no limitation on the num-
ber of cards in the station request deck. The last card of the station request
deck must be an END card (END punched in columns 1-3). The station request
card format is as follows (unless otherwise specified, all leading zeroes are to
be punched):

Columns:

1-2 The subchannel of the DCC to be used.

3-4 The internal station number.

7-15 The BCD time associated with the first observation desired.
The columns are to be punched as follows:

xxxxxX.xX Any leading zeroes are left blank.

17-25 The BCD time associated with the last observation desired.
Punch columns the same as shown above for columns 7-15.

27 M code: the m code is used to tag the report with a begin-
transmission or end~of-transmission mark and a valid or
invalid-data identification.

29-30 Transmission error code.

32-33 Pathological code.

35-36 Random error code.
(NOTE: The random, transmission, pathological and bias
error codes explained in the Shred program write-up.)

38-52 The transmission delay desired for this station, in floating-

point milliseconds.

+ X, XXXXKXKXX, +YY

2-32

MC 63-4

Columns:

65-66 Type of radar: punch H for high-speed or leave blank if
low-speed.

67-68 Set number associated with the station requested.

70-71 Bias error code.

The station request cards must be in sequence by set number.

2.8.2 Output Requirements
A binary output tape is generated and is used as input to the Shred program.
Each tape recorded contains 800 words, eight words per logical record. The
logical record format is as follows:
Word 1—the decrement contains the transmission error code.

Bits 23 to 26 contain the pathological error code; bits 28 to 32 con-
tain the random error code; bit 33 represents the valid or invalid
identification (bit represents valid data); bit 34 represents the
start-of-transmission tag; and bit 35 represents the end-of-
transmission tag (bit indicates presence on the latter two tags).
Bits 8 to 11 contain the bias error code.

Word 2—time of receipt of the first character by the computer, in
milliseconds, binary integer.

Word 3—subchannel of DCC, binary integer
Word 4—time of observations in BCD:

xx Hrs xx Min xx Secs
Word 5—internal station number, binary integer
Word 6—slant range, in floating-point yards
Word 7—azimuth, in floating-point degrees
Word 8—elevation, in floating-point degrees

High padding is used in the last tape record.

2-33

MC 63-4

2.8.3 Method

The noise and errors injected into the data fall into four classes; numerous
variations are possible within each class. The four classes are:

a) Random errors—random noise generated by the radar set in making an
observation.

b) Transmission errors—the random noise introduced by the transmission
system.

¢) Pathological errors—the nonrandom failures which creep into the sys-
tem to cause dropping or garbling of bits, words, or transmissions due
to outright failures in the system. Any conceivable trouble can be in-
troduced in this class.

d) Bias errors—the consistant algebraic bias of data caused by misalign-
ment of tracking equipment.

The order of application of the classes of errors is bias, random, patho-
logical, and transmission. This sequence conforms most closely to their order
of actual occurrence. If both bias and random errors are applied, the random
errors are applied to the data which has been previously biased.

Errors of all four classes are injected in the data in any combination of
available variations, thus offering the facility of changing the variations from
one section of the data to another. This changing of variations is accomplished
by sectioning the data by means of the time interval cards which serve as input
to the Selector program. Each group of radar site observations can be divided
into arbitrary time intervals, and within each interval one variation of each
class of errors may be applied.

In general, several time interval cards would be prepared for each site.
The site code and the teletype channel over which the radar transmissions are
to be sent are given on this card. The time interval corresponding to that card
is specified by t; and tf. The variation of each class of errors to be applied to
that interval is specified by error codes. Also specified on this card is a
transmission delay associated with this section of data; this information, in con-
junction with the time of observation, determines when the data arrives at the
input to the computer. A further item given on this card is information regard-
ing teletype control signals needed to complete the generation of a transmission.

Using the time interval cards and the tape generated by Observer as inputs,
Selector generates a tape containing the selected radar data and associated sys-
tem error codes in proper form from input to the next data generation program,
the Shred program.

2-34

STNOC =0

|

REWIND INPUT TAPE C6
AND QUTPUT TAPE
Bé6 AND INITIALIZE
ALL INDEX REGISTERS

O

MC 63-4

RCD HALT
READ ONE AND
INPUT CARD TRANSFER

PLACE HIGH
PADDING IN
LAST OUTPUT

BLOCK AND

WRITE OUT
TRA LAST RECORD
SOS 10

ON TAPE Bé.
WRITE END OF
FILE AND
REWIND Bé6

END CARD

i

/ fe O\

HALT
CONVERT AND
STATION REQUEST TRANSFER
CARD CONTENTS

Y

< REWIND INPUT
STNOC : STNO TAPE AG.
STNOC=10

STNO: STATION NUMBER

OF DATA REQUESTED

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Sheet I of 5)

2-35

MC 63-4

|

READ ONE
RECORD
FROM INPUT
TAPE INTO
BUFFER
*BUF 2 TO
BUF 2+ 7"

A(BUFF)
> STNBT

|
BACKSPACE > / \ <
ONE RECORD - STNOT : STNO

Aéb \ J

]
@ INCREASE BUF 1

INDEX BY 7
c°7-cC®
PLACE TIME OF RE-
PORT TR IN FIRST
TWO WORDS OF BUF 1

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Sheet 2 of 5)

2-36

MC 63-4

SLANT RANGE

SR. »
BUF 15+

AZIMUTH l

AZ.»
BUF 1 -4+ i

LEVATION ‘

EL. >
BUF 1 -3+ i

—
1
TIME SINCE

LAUNCH PLUS
STATION DELAY

I

[orLn \ HALT

CONVERT TIME \ - AND
OF RECEIPT TRANSFER
(T.) TO INTEGER

l

Tc-b
BUF 1 -1+

l

/ DFLN \

CONVERT TIME
SINCE MIDNIGHT
PRECEDING
LAUNCH FIXED PT.

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Sheet 3 of 5)

2-37

MC 63-4

COMPUTE TIME
IN HRS., MIN., SEC.,
CONYERT TO BCD

AND PLACE IN

BUF1-2 +i

r;0

Tp: LAST
REPORT TIME
(TR)

<

PRINT ON-LINE
ERROR "ERROR REQUEST < Ta:T T Y
HALT ASKS FOR IMPOS- A:lr
SIBLE TIME"

BEGIN OF
TRANSMISSION
FROM STATION ¢

TA: FIRST TIME REQUESTED
PLACE BEGIN

Tp: LAST TIME REQUESTED OF TRANSMISSION
TAGIN

T,: CURRENT TIME REPORT

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Sheet 4 of 5)

2-38

END OF
TRANSMISSION
FROM STATION

YES

!

PLACE END OF
TRANSMISSION
TAG IN REPORT

NO

+

DATA
INVALID
FROM STATION

YES

PLACE INVALID
DATA TAG
IN REPORT

PLACE REPORT
IN OUTPUT
BLOCK. TIME
OF ARRIVAL (T)
S.R., AZIMUTH,
ELEVATION, TIME
OF OBSERVATION,
STATION NUMBER
(HIGH SPEED OR
LOW SPEED)
CHANNEL
NUMBER OF
DCC

IS OUTPUT
BLOCK
FULL

f———————

YES

WRITE OUTPUT
BLOCK ON TAPE
Aé AS ONE
RECORD

r+1 > r

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Skeet 5 of 5)

MC 634

2-39

MC 63-4

2.9 SHRED PROGRAM

The Shred program produces simulated Mercury mission data in real time
for the Goddard computer.

A schematic diagram of Shred is shown on Figure 2-8.

Shred produces the following simulated input for SIC:

a)
b)
c)
d)

e)

IP 7094 data

B-GE data

Telemetry readings for Goddard
Low-speed TTY readings

High-speed radar readings

2.9.1 Input Requirements

There are two input tapes used with the Shred program: (1) the launchtape
provides simulated B-GE and IP 7094 launch data, and (2) the sequence of radar
readings produced by the Observer program and selected by the Selector pro-

gram.

Shred is controlled by the radar input. Each logical record of radar infor-
mation (or observation) contains:

a)

b)

c)
d)
€)
B
g
h)
i)

Type of output required

Time at which the message is to be simulated upon arriving at the
computer

Perturbation codes (PEC, REC, and TEC)
Begin or end-of-transmission codes
Validity code

Range, azimuth, and elevation (RAE) values
Time of RAE observation

Subchannel of DCC to be used

Station identifications

2-41

MC 63-4

The input to Shred is an 800-word per record tape containing 100 radar
readings, each reading consisting of eight words. The 8-word readings are re-
ferred to as logical records.

2.9.2 Output Requirements

The output of the Shred program is contained on three tapes:

a) Low-speed output for Goddard

b) High-speed output for Goddard

c) Bermuda high-speed output for Goddard

The low and high-speed output to Goddard must first be independently
sorted by time-of-arrival sequence (since the size of the logical record is dif-
ferent for high-speed and low-speed data), then merged to form one SIC input
tape.
2.9.3 Method

A radar reading is provided by the observer-selector complex each time a
reading is requested (there are some exceptions to this in the launch phase).
Each reading contains a PEC, REC, TEC and BEC (pathological, random,
transmission and bias error codes). These codes are used to obtain controlled
perturbations in the Shred (teletype message format) output message.

2.9.4 Usage

Shred uses a series of tables as its input to provide a flexible output.
Shred usage reduces to a description of these tables:

Table Function of Provides
T1 internal station the subroutine to be used for
number each particular Shred input
reading
T3 channel number the Shred region to be used to

format messages
T4 station number the first seven characters of

TTY transmitted radar mes-
sages for Goddard

2-42

Table

TS

SPTEi

SPCVi

SPICi

RER

REA

REE

PER

PEA

Function of

station number

TEC (transmission
error code)
i=1,2,...N

radar type

radar set

REC (random
error code)

REC

REC

PEC (pathological
error code)

PEC

MC 63-4

Provides

conversion factors from Shred
input to simulated input

(1) three probablities for a
transmission error and

(2) three conditional probabilities
which determine the type of
transmission error, given by
(1) that such an error exists
for TTY messages only,
there are three sets of the
above six probabilities, one
set each for the beginning,
body and end of transmission
of the message

conversion factors from Shred
radar input units to Shred radar
output units. Applies biased
errors

the first seven characters, in
octal TTY code, of each mes-
sage that will be sent by a par-
ticular radar site

standard deviations for applica-
tion as random errors to range
readings for all radars. Any er-
ror code of zero causes that
particular type of error to be
bypassed, i.e., no error

standard deviations for applica-
tion to radar azimuth readings

standard deviations for applica-
tion to radar elevation readings

numbers used to simulate patho-
logical errors in radar range
readings

simulated pathological errors
for radar azimuth readings

2-43

MC 63-4

Table Function of Provides

PEE PEC simulated pathological errors
for radar elevation readings

PET PEC simulated pathological errors
for observation time in radar
readings, applicable to both
Goddard low-speed and Bermuda
radars

HP1 PEC=1,2,...15 the pathological errors to be ap-
plied to the simulated position-
velocity vectors of the B-GE

HP2 PEC the pathological errors to be ap-
plied to the simulated position-
velocity vectors of the IP 7094

HR1 REC-1,2,...15 the standard deviations for ran-
domly perturbing the simulated
position - velocity vectors of
the B-GE

HR2 REC the standard deviations for ran-
domly perturbing the simulated
position - velocity vectors of

the IP 7094
HST1 telemetry bit the telemetry schedule for the
launch phase
HST1A manual reverse: telemetry
HST1B telemetry bit probabilities that the telemetry

schedule is in error also ECT,
RFT, GEB line 1 HSRR, IP 7094
line 2

HST2 the periods of time during which
simulated B-GE data is to be
produced. The source of this
data is the STL simulated data.
If no STL message exists for a
given time, no data will be pro-
duced for that specific time. The
STL message time is used.
Sometimes Shred modifies this
time to reflect time delays, etc. ‘

2-44

HST3

HST11

Function of

MC 63-4

Provides

the periods of time during which
IP 7094 data is to be produced.
The IP 7094 data is interpolated
from an error-free set of
position-velocity vectors pro-
vided by STL. Messages are
produced for the entire 'on"
periods of time, even if these
times do not correspond to time
of the r-v table. The latter
values, however, are meaning-
less except perhaps for the
telemetry

Table HST2 and HST3 are of the
form:

HSTi DEC first time data
requested

DEC end of first request

DEC ith time data re-

quested
th
DEC end of i request

DEC n*? time data re-
quested

DEC end of nth request

OCT 377777777777
(large number)

All times are given as binary
integers in microseconds, i.e.,
XX.XXE6B35 where XX.XX is
in seconds

Miscellaneous input parameters:

HST11 BCI I,XXYYZZ
BCI I,0000AA
BCI I,PPQQRR
DEC Y

2-45

MC 63-4

Table Function of

HST12

HST13

2-46

Provides

where: XXYYZZAA is the GMT
of launch for Bermuda radars in
hours, minutes, seconds and
tenths of seconds. PPQQRR is
the ECT of launch for telemetry
messages in hours, minutes and
seconds. v is the angle from
the launch pad to Greenwich
(the angle between Mercury in-
ertial and IP 7094X-axes at
launch in floating-point radians.
One value is 1.40581173. The
value varies slightly with differ-
ent pads)

the times, in microseconds, at
which to change the retrofire
setting in the spacecraft. The
table is of the form:

HST12 DEC time for first
change

DEC time for second
change

DEC time for last
change

OCT 3777777777717

This table is used in conjunction
with HST13

the retrofire settings for the
spacecraft clock. The table is
of the form:

HST13 BCI 1, original clock
setting

BCI 1, second setting

B&JI 1, last setting

Table

HST14

METRY

Function of

The ordered events are:

METRY

+

+ 4+ + + F++ o+
W10 G-

+ +
Pt b
- O

MC 634

Provides

The settings are ECT's since
launch of the form XXYYZZ
(hours, minutes and seconds).
When HST12+ i<t < HST12+i+1,
where t is message time, the
clock setting used is HST13+i +1

the periods of time during which
Asuza data is to be produced.
The simulated source for this
data is the STL IP 7094 data.
Shred tags the IP 7094 data with
a minus sign to distinguish the
Asuza source from the IP 7094
source. The table is of the
same form as table HST2

the telemetry schedule for the
launch phase. All times are
referenced to launch. (If launch
is not at midnight, see HST 11).
The times are given in fixed-
point milliseconds. The table
is of the following form:

METRY DEC XXX.XXX

ME:I‘RY +14 DEC XXX.XXX

Start Bermuda solution

One of three posigrades fired
Two of three posigrades fired
Three of three posigrades fired
One of three retros fired
Two of three retros fired
Three of three retros fired
Liftoff

Escape tower released
Escape tower rockets fired
Spacecraft separation

Abort sequence initiated

2-47

MC 63-4

+12 Abort phase started
+13 Orbit phase started
+14 SECO

When the time of a message being generated is equal to or greater than the
time the telemetry event is scheduled to occur in METRY, all messages there-
after indicate that the event has occurred. Because of this slight lag in the
assignment of an event to messages, the times in METRY should precede the
actual times by one or two seconds.

SHRED: ADDITIONAL INPUT DATA

Symbol Op Code Var Field

HSPGOD EQU A nonzero value requests that the particu-
lar type of data be produced, i.e., high-

LSPGOD EQU speed data from Cape Canaveral to
Goddard, low-speed TTY data from radar

HSPBRM EQU stations to Goddard and high-speed input

for the Bermuda computer. The presence
of a nonzero value will cause a tape to be
labelled appropriately and will erase any
superfluous data in the output regions at
the end of the output data.

ADJTM EQU A nonzero value produces messages in the
new telemetry format. A zero value pro-
duces messages in the old TTY format.

The new format is designed to lessen non-
recognition of poorly transmitted messages
by repetition of key information. Is is the
sole format in use, except for transitionary
testing, at present. Pertains to Goddard
Shred only.

THSML EQU A nonzero value gives the FPS/16 radar a
maximum range of 1000 nautical miles
(210). If zero, the FPS/16 has a range of
500 (29) naut. miles. Pertains to Goddard
Shred only.

2-48

Symbol
HSGODD

LSGODD

HSBERM

Op Code
BCI

BCI
BCI
BCI
BCI

BCI

MC 63-4

Var Field

9, | There must be a 10-word heading or
heading space provided for each sym-
bol of HSPGOD, LSPGOD and
HSPBRM that is nonzero. Even
t \ through the heading on the low-speed
5,(output tape is lost during variable
length merge, reading operations de-
mand that this tape have a heading. If
a heading is omitted, the first record
of that tape will be read as the heading
5, | and the remaining information on the
tape will be misinterpreted.

2-49

MC 63-4

USING STATION NUMBER
TABLE T! GIVES TYPE
OF OUTPUT REQUIRED

1.2,3

CONTENTS OF
INPUT MESSAGE

SIMULATOR STATION NO.

SUBCHANNEL NUMBER
PEC, RED, & TEC

PATHOLOGICAL, RANDOM, &
TRANSMISSION ERROR

CODES
TIME OF OBSERVATION
RANGE
AZIMUTH
ELEVATION
TABLE| ARGUMENT PURPOSE
T2 lSTATION NUMBERI LOCATE SPTE; TABLE
T3 | CHANNEL NUMBER LOCATE INTERNAL WORK AREA
T4 STATION NUMBER | LOCATE SPIC, TABLE
T5 STATION NUMBER | LOCATE SPCV; TABLE
SPTE, TEC TRANSMISSION ERRORS FOR
| | STATION
SPIC; | - | FIRST SEVEN TTY CHARACTERS

FOR MESSAGES FROM

STATION i
@ sPCv; | -- CONVERSION FACTORS FOR
RADAR READINGS FROM

GO
TO NEXT
MESSAGE

LOW SPEED | I STATION i
TTY MSG PET PEC PATHOLOGICAL ERROR FOR
FOR | | TiIME
GODDARD | pep |pEC PATHOLOGICAL ERROR FOR
RANGE
PEA PEC PATHOLOGICAL ERROR FOR
AZIMUTH
PEE |PEC | PATHOLOGICAL ERROR FOR
| ELEVATION
RER REC RANDOM ERROR- RANGE
REE REC RANDOM ERROR - ELEVATION
REA REC RANDOM ERROR - AZIMUTH

FIGURE 2-8. SCHEMATIC DIAGRAM (SHRED TABLES) (Sheet I of 3)

2-50

MC 63-4

TABLE ARGUMENT PURPOSE
a=2 - 1 1
HIGH SPEED MESSAGES T2 | STATION NUMBER | LOCATE SPTE; TABLE
FOR GODDARD T5 STATION NUMBER | LOCATE SPCV; TABLE
SPTE, | TEC TRANSMISSION ERRORS
FOR STATION i
HSTE - | TELEMETRY SCHEDULE
HsTiIB | - I TELEMETRY ERRORS
HPI PEC PATHOLOGICAL ERRORS
USING TIME AS AN I | o R ea TION - VELOCITY
ARGUMENT AND " I
TABLE HST2 TEST =" HRI REC RANDOM ERRORS FOR
FOR B-GE CEB POSITION - VELOCITY
VECTORS
HP2 PEC PATHOLOGICAL ERRORS
FOR POSITION VELOCITY
"i'&'gufa'é‘ :TA:NADN | YECTORS
HR2 REC RANDOM ERRORS FOR PO-

TABLE HST3 TEST "

WANT
FOR 1P7094 \P7094

SITION VELOCITY
VECTORS

GO TO
NEXT
MESSAGE

FIGURE 2-8. SCHEMATIC DIAGRAM (SHRED TABLES) (Sheet 2 of 3)

2-51

MC 63-4

@ iy
BERMUDA | 1°

2-52

TABLE ARGUMENT PURPOSE
T2 STATION NUMBER LOCATE SPTEi TABLE
CHANNEL NUMBER | BASIC MESSAGE FORMAT AND
INTERNAL WORK AREA
| STATION NUMBER | LOCATE SPCY, TABLE
SPTE, | TEC | TRANSMISSION ERRORS
SPCV, - CONVERSION FACTORS FOR RADAR
AT STATION i
HSTI - TELEMETRY SCHEDULE
HSTIB - TELEMETRY ERRORS
PER | PEC | PATHOLOGICAL ERRORS - RANGE
PEA I peC | PATHOLOGICAL ERRORS - AZIMUTH
PEE PEC PATHOLOGICAL ERRORS - ELEVATION
RER REC RANDOM ERRORS - RANGE
REA REC RANDOM ERRORS - AZIMUTH
REE I REC | RANDOM ERRORS - ELEVATION
P |
| l
1]
GO TO
NEXT
MESSAGE
FIGURE 2-8.

SCHEMATIC DIAGRAM (SHRED TABLES) (Skeet 3 of 3)

MC 63-4

2.10 SORT PROGRAM

The Sort program arranges radar observations recorded on tape according
to their time of arrival to the computer. This program sorts either the output
of the Selector program for Bermuda tapes or the output of the Shred program
for all tapes generated for Goddard reception.

Figure 2-9 shows the flow chart for the Sort program.

2.10.1 Input Requirements
a) A binary tape containing radar observations.
b) Alter cards, recognized by SOS, of the following types:

1) An equals card which identifies the size of the tape record of the
binary tape.

2) An equals card which identifies the size of the logical record
length of data within the tape record.

3) An equals card which identifies the size of the logical record.

4) An equals card which indicates whether the input tape does or does
not contain a tape label.

¢) The program also has the ability to sort, by means of an equals card,
the input tape set at any logical setting on a given channel.

The Sort program requires four fapes: one is the original input tape; the
others are required for successive merge passes in the Sort program. Two of
the four tapes are on channel A; the original input tape and the remaining tape
are on channel B. Logical settings for the other three tapes are variable and
can be set by an equals card as input to SOS.

2.10.2 Output Requirements

The only output requirement for the Sort program is the selection of the
output channel for the final tape. The output tape can be obtained on either
channel A or B; selection is set by another equals card to the program. The
output tape's record length originates from the same record length as does the
input.

2-53

MC 63-4

2.10.3 Method

There are two main phases of operation in the Sort program. The first is
the sorting phase, where records on the input tape are sorted according to the
key word of the sort operation. The second phase merges the records sorted by
time of arrival to the computer and arranges them so the final output tape is
sorted by information within each record and also by the records themselves.

In the first phase, the program tests the input tape to determine if it has a
label. If the tape has a label, the program reads the label and saves it for
future reference before processing begins. Initially, the program reads the
first two records from the input tape into two separate buffers. Then, the pro-
gram sorts the information in one record, according to the key word set by the
equals card, and stores the information on one of the tape units on channel A.
Sort reads the next tape record into the buffer unit just emplied and continues to
the second buffer. Again, the program sorts information in the record but
stores it on the opposite tape on channel A. The program continues this opera-
tion with the different records on the input tape, continually storing the sorted
information in the records alternately on the two tapes of channel A. The first
phase is completed when the program reaches an end-of-file indication on the
input tape. The Sort program then rewinds the input tape and the two output
tapes on channel A.

During the second, or merge, phase the Sort program compares the key
words from the first record of the first tape on channel A. This comparison is
made to determine which key word is in the lowest-order sequence. Once this
sequence is established, the key word and its corresponding logical records are
stored in the output buffer. The program continues this operation until the out-
put buffer is filled and a corresponding record is written on the output tapes.
Therefore, logical records could come, partially, from each record from each
channel A input tape. The procedure used to record records is as follows:
Two records are alternately recorded for the first pass on each tape. For
example, two sorted records are recorded on tape Bl, and the next two on B2,
etc., until the pass is complete.

The procedure for the second pass is similar to the first pass except that
the records are stored as four records to each tape. The records of each pass
are recorded according to powers of two, beginning with two to the first power.
The second pass is recorded at two to the second power, or four records to
each tape; the third pass is recorded at two to the third power, or eight records
to each tape, etc.

The final pass of the merge phase is reached when the Sort program rec-
ognizes that it has reached the point where it has written all of its input as out-
put on one tape for that pass. For example, if the input consists of a total of
64 records, the final merge pass presents a powers-of-two configuration that
has recorded all 64 records on one tape. Since the information has now

2-54

MC 63-4

elapsed, records will never be placed on the other tape. This signals the end
of the merge pass.

The final step of the Sort operation is to determine if the final output tape
is on the program output channel, as indicated by an input parameter to the
program (since the channel on which the output will be recorded depends on the
number of records of input and how badly they are originally out of sort). If
Sort has determined that the output is now on a channel which was not requested
by the input parameter, it will essentially go through one more pass of trans-
ferring the data from the channel on which it is now to the requested output
channel. However, if the tape information is on the requested channel, the
program is finished. The program writes on end-of-file message upon the
final output tape, rewinds the tape, and transfers to SOS for completion.

Tape output formats are shown in tables 2-1 through 2-4.

2.10.4 Usage

a) Tape Set-Up: Al SOS System tape Check Tape

A2 Blank list tape L.D.
A3 Job tape L.D.
A5 Blank H.D.
A7 Blank H.D.
B1 Blank L.D.
B2 Blank L.D.
B3 Blank L.D,
B6 Shred input H.D.

b) Sense Switch Setting—none.

¢) Key Setting—none.

d) Operating Instructions—clear machine and load tape.
e) Halts:

HPR 444448 Remove B6 and replace with a
blank., Press START.

HPR 333338 Tape read error. Press START
to continue; if error persists re-
generate bad tape if possible. If

no corrective action is possible
pull job.

STOP 14028 Label B6 '""Bermuda Shred" save
for next job.

2-55

MC 63-4

TABLE 2-1. TAPE FORMAT - LOGICAL RECORD

SHRED OUTPUT - HIGH SPEED RADAR
FOR GODDARD

Bit Bit Bit Bit
S 35 S 35
W°']d TIME OF ARRIVAL -y sec. TIME OF ARRIVAL -y sec.
DECREMENT, , SUBCHAN. DECREMENT, ,SUBCHAN.
2 | 000 0240 (2or34) 000 02 4|0] (20r34)
3 TIME FOR TRAP ~p sec. TIME FOR TRAP -pu sec.
4 00]00 |OO]OO
5 FIRST 36 BITS 00{00 |00]00
6 OF TELEMETRY 00[00 |00]|00O
7 0000 [00]00O
8 00|00
18 RANGE; RANGE3
1 AZIMUTH AZINUTH
12
:3] eLevaTion [*3] ELevaTioN
15 : I] 0 1 [Seenote o l] 1 0 |Seenocte
16 00100 |0000
17 SECOND 36 BITS 0000 j001}00
18 OF TELIEMETRYY 00|00 |00]O00O
19 00{00 (00 (00O
20 00100
> RANGE, RANGE
23 AZIMUTH AZIMUTH,
24
25 |*2 [*4
% ELEMATION ELEVATION
27 A 0 1 [Seencte ¥ I 1 1 0 |Seenote

NOTES: 01 = Cape, 02 = Grand Bahamas, 03 = San Salvadore.
* = 1000 mile recycle bit for range.
= On Track bit.
1 =0n Track.
0 = Off Track.

2-56

Word

n®

MC 63-4

TABLE 2-2. TAPE FORMAT - LOGICAL RECORD

SHRED OUTPUT - IP7094

it

B
35

TIME OF ARRIVAL - p sec.

SUBCHAN.
000 02 402 or 341)

TIME OF TRAP ~p sec.

72 Bits T/M
(Same as ¥or GEB

>

B6 Bits Floating
Point

00
01

O] O
OIO

00 |00

ODD (FIRST)
FRAME

Bit Bit
S 35
TIME OF ARRIVAL - 4 sec.

SUBCHAN.
000 02 4/0](20r34)
TIME OF TRAP -y sec.
X
Y
z
SX | XX
XiX| XX | XX | XX
X-X| XX|[Xxo0]o0o0
o o - - -
TMEZ | 670
CHECK SUM
00 [00
00]00 |10 (00

EVEN (SECOND)
FRAME

2-57

MC 63-4

TABLE 2-3. TAPE FORMAT - LOGICAL RECORD

Bit

SHRED OUTPUT - GE BURROUGHS

Bit Bit Bit
35 S 35

Word
]

TIME OF ARRIVAL -psec.

TIME OF ARRIVAL -psec.

DECREMENT, , SUBCHAN.

2 |0.000 240 (1 or 33y

DECREMENT, , SUBCHAN
000 02 40 (1 or 333)

3 TIME FOR TRAP -y sec. TIME FOR TRAP -p sec.
4 ECT SX ¢t XX | ==

5 Y

8 RETRO ST XX

7

8 FIRE 5

9 41 42 |43 44 |45 46 | 47 48

10 49 TIME - X[X X | XX
1 57 XX | XX | XX | XX
12 65 66 |67 68 |69 70 |71 72 X X X X X X X X
13 DISCRETE

14 X| XX | = - | - CHECK SUM

15 (X)

16

17 X| X X | - - | -

18

19 Y

20 X[X X[= =] -

21 7 BIT PATTERN

22

23 X1 X X | = = -

24

25 X

26 00j00|[0O0]|O00O

27 00[0O0]lO01]00O [0 T0100

ODD (FIRST) FRAME

2-58

EVEN (SECOND) FRAME

MC 63-4

TABLE 2-4. TAPE FORMAT - LOGICAL RECORD

SHRED OUTPUT - LOW SPEED TTY

Bit Bit
5 35
Word
T TIME OF ARRIVAL IN sec.
DECREMENT TAG| _ SUBCHAN.
2 0 6 0 o0 6 |0] (4-3)
3 TIME FOR TRAP IN p sec.
4 |0 =0 |X|X|x[x|x
5 0 —- = 0 |X|X|X|X|X]
6 TTY
6 0 - - 0 IXIX|XIXIX Characters
in TTY Octal
7 0= =0 [x[x|X|x|X
8 |0 = = 0 [x{x[x|x|
9 |0 - = 0 [x[xx|x|X
3035

2-59

MC 63-4

REWIND INPUT TAPE

(NO
INPUT TAPE LABELED }—

[YES

READ TAPE LABEL

1

WRITE TAPE
LABEL ON
OTHER CHANNEL
TAPES

| ——

Y
READ TWO

N = NUMBER OF

WORDS IN THE
INPUT RECORD

RECORDS FROM
INPUT TAPE

INTO TWO BUFFERS

I =LOCATION OF BUFFy + BUFFy
THE KEY WORD -
IN THE LOGICAL
RECORD "
a SET OFF

NL = NUMBER OF
WORDS IN THE ;4

LOGICAL <
@BUFFHH):C(BUFFHHHD—

RECORD
i>

SET aON

!

0->n

O

C(BUFF +i+n)
C(BUFF +i +k +n)

!

n+1-+n

!

</ \ =

n: 2
\ < ‘O

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet I of 5)

2-60

MC 63-4

| 0
0
SWITCH BUFFERS 0
SELECTION 0
AND OUTPUT
TAPEX 2 Y
[1

(is aon YES °
N0
WRITE SORTED
RECORD ON
CHANNEL A
TAPEx
\ YES
HAS AN . L !
END-OF-FILE SET k
BEEN READ OFF1 » B
ON INPUT TAPE Y
WRITE END
e OF FILES ON
oSk
N N
ReCORD s INPUT & OUTPUT TAPES
BUFFx

i
3a~v

READ TWO RECORDS
FROM EACH TAPE
FROM CHANNEL A INTO
CORRESPONDING
BUFFERS

OFF ON

READ TWO RECORDS
FROM EACH TAPE

FROM CHANNEL B INTO

CORRESPONDING
BUFFERS

FIGURE 2-9. SORT PROGRAM FLOW CHART (Skeet 2 of 5)

2-61

MC 63-4

C

C(BUFFy +ny +1): C(BUFF, +ny +1)

SETi=2

‘

SETi=1

(C(BUFFi SR I R

> |< - 0 -

C(BUFF; +n))
~ OPBUF +k

i+l >

n.+1 5 n.
i i

m+1->m

(D=

0> m --(p:0)
= ' #
1> g
|
1
(1S k ON)
READ ONE RECORD WRITE OUTPUT WRITE OUTPUT
FROM THE TAPE
BUFFER AS BUFFER AS
CORRESPONDING A RECORD ON A RECORD ON
TO THAT BUFFER
OUTPUT TAPE ON| |OUTPUT TAPE ON
JUST ELAPSED CHANNEL B CHANNEL A
INTO THAT BUFFER
SWITCH BUFFERS SWITCH
FOR THAT TAPE —1 OUTPUT
(ALTERNATE) BUFFERS

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet 3 of 5).

2-62

MC 63-4

SETi=2

C(BUFF; +n,)
+ OPBUF +m

CroD)

OFF ON
Y
READ A RECORD WRITE OUT WRITE OUT READ A RECORD
INTO BUFFER JUST OUTPUT BUFFER OUTPUT BUFFER | INTO BUFFER JUST
ELAPSED FROM AS A RECORD AS A RECORD ELAPSED FROM

THE PROPER TAPE
ON CHANNEL A

ON OUTPUT TAPE
ON CHANNEL B

ON OUTPUT TAPE
ON CHANNEL A

THE PROPER TAPE
ON CHANNEL B

@.J“

SWITCH
OUTPUT BUFFERS
AND ALTERNATE

TO OTHER TAPE ON
CORRESPONDING

OUTPUT CHANNEL

FIGURE 2-9. ‘SORT PROGRAM FLOW CHART (Sheet 4 of 5)

2-63

MC 63-4

Coo D

OFF ON
[]

WRITE END OF WRITE END OF
FILES ON FILES ON
OUTPUT TAPES ON OUTPUT TAPES ON
CHANNEL B AND CHANNEL A AND
REWIND ALL TAPES REWIND ALL TAPES

I

(qa:0)i———-ﬁu»/s = SET k ON

1S OUTPUT ON YES RA

PROPER CHANNEL 0s$

ASKED FOR 10
NO

Y

TRANSFER DATA

FROM CURRENT

OUTPUT TAPE

TO TAPE ASKED
FOR

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet 5 of 5)

2-64

MC 63-4

2.11 MERGE PROGRAM

Merge combines several sorted binary input tapes containing radar infor-
mation to obtain a single input tape—with the information arranged in sequence
according to the keyword. Its main purpose is to merge a tape containing high-
speed data used by the launch programs with a tape containing low-speed data
for orbit and reentry portions of the flight profile, thus obtaining a single tape
containing simulated data of an actual Mercury launch-orbit-reentry mission.

The flow chart for Merge is shown in Figure 2-10.

2.11.1 Input Requirements

Merge is written in a general fashion and combines up to nine input tapes.
One of the input parameters required by the program is the number of input
tapes to be merged. The number is entered using an equals card to equate a
parameter to the number of tapes. The program also has the capability to
merge tapes of different record sizes (i.e., Merge handles variable record
sizes between different tapes). The same is true for variable size logical rec-
ords and for the location of the key word within the logical record between the
tapes. The key word in the logical record of one tape can be the first word, in
the next tape the key word can be the last word, etc. This does not mean that
the record size, the location of the key word, or the size of the logical record
is variable within one given tape. This means only that the size of the logical
record and the location of the key word is variable between tapes. Therefore,
input to the Merge program will be equals cards which indicate to the program
the size of the tape record for that particular tape, its logical record, and the
location of the key word. Each tape requires these three input cards. If nine
input tapes are used, 27 parameters are needed to describe the essential quan-
tities needed by the program.

Another parameter indicates when the input tapes are labeled. The pro-
gram does not have the capability to merge tapes having labels with tapes not
having labels; i.e., unlabeled tapes and labeled tapes cannot be merged.
2.11.2 Output Requirements

The Merge program can present any desired record size in its final output
tape. The record size is fixed by an equals card.

2.11.3 Method
The Merge program first looks at the parameter which indicates the num-

ber of input tapes; then looks at the input parameter to determine if the input
tapes are labeled. If they are labeled, the program reads the label from each

2-65

MC 63-4

input tape and writes one of these labels on the output tape. Two input records
are then read from each tape—the assumption is that the input tapes are now all
sorted within themselves.

A comparison is made between words of all the logical records to deter-
mine which one is the low-order word. This key word, together with its logi-
cal record, is transferred to the output buffer. The Merge program continues
to read records of each tape, comparing the key words of each tape and storing
the logical records in sequence in the output buffer. The contents of the output
buffer is written on the output tape when the record size is reached. This rec-
ord is written on the proper tape as indicated by the logical setting. The pro-
gram continues this process until it has read an end-of-file indication on all
input tapes. The program now fills the last unused record buffer with high pad-
ding (a word containing all 1's with a plus sign), the reason is that in a sort
operation this would be the highest magnitude. An end-of-file is then written
at the end of the output tape, the output tape is rewound, and a transfer is made
to SOS for completion.

2.11.4 Usage

a) Tape Set-Up: Al SOS Sys. tape

A2 List Tape

A3 Job Tape

A6 Blank For Output
Bl Blank

B2 Blank

B3 Sorted High Speed
B4 Sorted Low Speed

b) Sense Switch Setting—none.
c) Key Setting—none.

d) Operating Instructions—clear machine and load tape.

e) Halts:

HPR 333338 Tape read error, press START to con-
tinue; if error persists regenerate bad
tape if possible. If no corrective action
is possible pull job

STOP 14028 Write end-of-file on A2. Rewind A6 and

IBTD first few records of A6 onto A2.
Write end-of-file A2 and list all files.
Label and save A6 per instruction sheet

2-66

N, =NUMBER OF INPUT TAPES

No

N;

L;

@ 4jONFOR
THIS BUFFER

FOR THAT TAPE

OF THAT TAPE

OF THAT TAPE

REWIND ALL INPUT
TAPES

!

MC 634

NO
INPUT TAPES LABELED
¥ YES
READ TAPE LABEL
=NUMBER OF WORDS IN
THE OUTPUT TAPE FROM EACH INPUT
TAPE
=NUMBER OF WORDS IN
THE INPUT RECORD]
WRITE TAPE LABEL
=NUMBER OF WORDS IN FROM FIRST TAPE
THE LOGICAL RECORD ONTO OUTPUT
TAPE
=LOCATION OF THE KEY |
WORD IN LOGICAL RECORD Yy
READ TWO RECORDS SET a;'s OFF
FROM EACH INPUT P
TAPE INTO 0 -
CORRESPONDING = "1} N
BUFFERS ni
| :
OFF{ a; ON FOR >
THIS BUFFER =
ON
V i+1 > i
>
C(BUFF; +nj +1;): C(BUFF, +y i +iji+1;+i)
L |
JOFF ON | =
) i+i o>
| i+l - j

FIGURE 2-10. MERGE PROGRAM FLOW CHART (Sheet I of 2)

2-67

1C 63-4

(C(BUFF, +n; +1): 1'S

!

0 - m
C(BUFF; +n,)
> OPBUF +k
m+1 > m
n.+1 = n/
K+1 - &'
Y
C nos N \, z
< \
“ a; ON OR
'é OFF OErZIPR
>
/N K: N BUFFER
_ i
i < ON
WRITE OUT
BUFFER ONTO <
SPECIFIED OUTPUT oL
TAPE L
i > !
SWITCH OUTPUT RERCEO”;Q%?:'%M
BUFFERS
THE TAPE
[] CORRESPONDING
0 - K TO THE ELAPSED
BUFFER INTO
° - 0 - n THAT BUFFER
\
swiTCH | |/ WAS AN
FILL UP CURRENT Btﬂrﬁlgas E;‘PL%F
OUTPUT BUFFER FOR THAT READ
W TH HIGH P ADDING TAPE
* ! Y YES
WRITE OUT CURRENT BUFFER TRA SET @ ON
AND ANOTHER RECORD $0% FOR THAT
OF HIGH P ADDING 110 BUFFER

FIGURE 2-10. MERGE PROGRAM FLOW CHART (Sheet 2 of 2)

2-68

MC 63-4

2.12 SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC)

SIC accepts the output of the Shred program (a data preparation program)
and enters this information into the real-time processing system by maintain-
ing control over monitor program execution and by simulating the Data Com-
munications Channel (DCC) operation.

The SIC program:

a) Maintains an estimate of simulated elapsed time.

b) Provides simulated input to the Goddard computers.

c) Records all output.

d) Simulates all traps.

e) Permits the use of Share Operating System (SOS) macros.

f) Measures machine loading time.

SIC performs these functions in such a way that time constraints on the
system are nearly the same as in a real-time situation,

The flow chart for SIC is shown in Figure 2-11; Table 2-5 lists the routines
and subroutines used by SIC.

2.12.1 Input Requirements

The formats of the logical records in a tape record have the same basic
pattern and are divided by time of arrival. The first three words are control
information; the rest of the logical record contains the exact configuration of
bits that should be in an input region. For example, the body for teletype con-
tains six words, each containing one teletype character.

The control words are:

Word 1—the time at which the first bit of the first word should arrive
in the computer. This time is expressed as a binary integer in
milliseconds.

Word 2 Decrement—number of words in body.

Word 2 Address—DCC subchannel to be used.

2-69

MC 63-4

Word 3—time at which the last bit of the last word should arrive in the
computer (i.e., the time of the trap).

Words 4 and continuing to next message—body of the message.

2.12.2 Output Requirements

The format for the output record is similar to the format used for input,
except for control words. The first control word of output corresponds to the
second word in the input; the second word corresponds to the third input word.
The third output word contains the Present Sense Lines (PSLF) mask. The
body of the output message is contained in consecutive words, starting with the
fourth word. It is possible, however, for the records to be slightly out of ac-
tual time sequence because of the need for using a discrete estimate (SIC's
clock) for continuous real time.

2.12.3 Method

A timing device in the DCC gives SIC control every millisecond via a trap
over subchannel 1. Not every trap, however, causes the entire set of SIC
routines to be executed. SIC performs its functions based on a predetermined
interval which may not correspond to the 1 millisecond trapping interval. For
example, SIC programs may be executed every 3 milliseconds although the
trap occurs every millisecond. This procedure is followed to provide simula-
tion flexibility and to adjust computer time to processing requirements.

The input interval used by SIC is established by bypassing N-1 of N traps,
where N is the input parameter. The time the computer remains enabled be-
tween successive traps is therefore N milliseconds. At the beginning of each
run, the length of time which SIC assigns as N milliseconds must be defined.

There is no way for the Mercury program to stop the input without losing
it. Input enters the computer based only on its time-of-arrival tag and SIC's
simulation of real time. However, the Mercury program can ignore input by
disabling the DCC (all DCC instructions must be simulated by SIC) thereby
shutting off the trap for the particular subchannel. Instead of giving the com-
mand directly, a reference table is used. If operating in a real-time situation,
these locations contain normal instruction; when simulating, an STR (store
location and trap) instruction which gives control to SIC, is used causing the
proper command to be simulated.

For debugging purposes it is desirable to suspend the normal flow of the
SIC/Mercury programs and perform debugging operations, such as selective
core dumps. The SOS system has many debugging macros useful for this pur-
pose. SIC makes possible the use of these SOS features by packaging all SOS

2-70

MC 63-4

macros with a pair of off-clock and on-clock subroutines. The off-clock sub-
routine disables the DCC (with its one-millisecond pulse) and gives control to
the programmed debugging macros, or initiates any other action which is to
take place during the suspension of time. To restart time, the program calls
for a SIC start-clock subroutine which restores conditions to what they were at
the time of the off-clock action, restarts the timer and returns control to the
program. Mercury programming then continues from the point where SIC/
Monitor program operation was suspended.

There are two stops in SIC for initializing the clock setting. One stop is in
the initializing block of SIC and the other is in a subroutine that is entered by a
TSX with the DCC disabled. Both stops are for defining the time (N milli-
seconds). The stop in the initializing block also permits a definition of the time
to start looking at data, allowing for a step forward into a tape on input so proc-
essing begins with pertinent data. The reason for two (or more) stops is that
during launch a faster computer is required than during orbit.

During the orbit phase the incoming flow of data is greatly reduced and the
computer essentially idles, waiting for new input. For simulation runs this idle
time uses valuable computer time and provides nothing in return. Such idle
time is employed by a combination of three techniques: (1) SIC is set to bypass
N-1 out of N-millisecond traps (where N <35; N=10 is generally used), (2) the
amount of time SIC assigns to the N-millisecond period between traps can be
increased, and (3) a special routine called STPTME (step time) is used to move
the SIC estimate of time forward to the next trap time if the computer is idling.

All output from DCC generated by the Monitor programs are recorded by
SIC. This recording is accomplished by setting up a signal which SIC recog-
nizes as a trap when Monitor starts to write output. When SIC recognizes the
trap, it removes the data from the output region, classifies and time tags it,
stores it in an output region and sets up the next trap. The process is con-
tinued until a signal is received from Monitor indicating that no more output is
available for the particular subchannel. When filled, the oufput regions are re-
corded on tape; they are then reused.

2.12.4 Usage
a) Using SIC to Simulate DCC Instructions
Certain instructions cannot be performed normally without using the DCC;

these instructions must be simulated. This is done by using XEC 0 instruc-
tions in the Mercury Monitor, where 0 contains STR when using SIC, and

2-T1

MC 63-4

the actual instruction when SIC is not being used. A table of such instruc-
tions is shown below.

SIC Instruction Used to Call
Subroutine to Simulated

Location Normal Instruction Normal Instruction
0 RCT STRO, 0, 1
0 ENBO, T STRO, T, 2
0 PSLF O, T STRO, T, 3

Both the SIC instruction and the STR can contain useful tags.
Effects of the various instructions are:

1) RCT: (XECO,T,) (0,T, : STRO, 0, 1):

1)
(a) Enables all channels according to the last enabling mask.
(b) If given after a data trap, and if more traps are waiting, the

new trap is simulated as coming from the location of the
XEC + 1 and all channels are inhibited.

2) ENB: (XECO, T,) (0, T:STRO, T,, 2):

1
(a) Enables all channels according to C (0, T

2); C(0, T2) be-
comes the new enabling mask.

2’

(b) The situation stated in 1(b) above also applies here.
3) PSLF: (XECO0, Tl) O, T1 : STR 0, T2, 3):

(a) Subchannels of the DCC (simulated) are enabled according to
C (0, T2) the next time they are checked.

() A PSLF does not enable the channel. Traps which occur on a
subchannel before an enabling of the subchannel by a PSLF
are not remembered.

b) Use of SIC Debugging

SIC permits the use of standard SOS debugging macros but they must be
sandwiched by SIC subroutines, stop-clock and start-clock, which suspend
and restart the special clock. The net effect is that time is suspended

during the executions of SOS debugging macros and restarted upon the com-
pletion of the executions.

2-72

c¢) Calling Sequence:

The calling sequence for the SIC program is:

STL OFCLK
TRA
SOS DEBUG MACROS
STL ONCLK
TRA

(MACRO)

(MACRO)

MC 63-4

2-73

MC 63-4

TABLE 2-5. INDEX OF ROUTINES AND SUBROUTINES USED IN SIC
NAME CALLING SEQUENCE PURPOSE AND REMARKS
1. SGSTRT GO Card Initialize for SIC run
2. XAA XEC STR Y,0,Z Simulate action of DCC when given an RCT,
ENB or PSLF command
XAB XEC STR Y,0,Z=1 RCT
XAD XEC STR Y,0,Z=2 ENB With mask in location y
XAG XEC STR Y,0,Z2=2 PSLF With mask in location y
3. CTAA SIC clock trap — No Bypass Simulator Input/Output Control (SIC)
CTAA2 SIC clock trap — Bypass
N-1of N
4. GSY SXD GSVS, 4 Save conditions
TSX GSV, 4
5. GRTN TSX GRTN, 4 Restore conditions
6. CTC C(XB)=Subchannel |denti- Record data leaving computer via DCC
fication
TSX CTC, 4
7. GRD TSX GRD, 4 Read record of SIC input
8. XAHorOFCLK STL XECS + 11 Disable SIC clock and setup for SOS Debug
TRA XAH Macro
9. XAKorONCLK STL XECS + 11 Restore computer for Mercury programs and
TRA XAK turn on SIC's clock
10. TARA TSA TARA, 4 Reverse the PSLF mask used by Monitor
for use with SIC — (SIC looks at it back-
wards because of an early misconception)
11. STPTME TRA STPTME Skip time ahead if possible
12. SGENDX TRA* STRBLE Finish output records and dump core —

or TRA SGENDX

(used to either wrap up a run)

2-14

FROM MERCURY LOADER

AND INITIALIZATION
ROUTIN

FROM OFCLK MACRO

STOP
CLOCK

REWIND B4, C10
LEAVE TRAP MOD

DISABLE,
SAVE XR4

INITIALIZE

GRD BRING IN
NEXT RECORD

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC)

[ENTER TIME OF RUN,
READ TIME INTERYV.,
BKIP C10 ID. RECORD |

Gsv

SAVE CONDITION

COMPUTE RETURN ADR,
SAVE LOC 0-29,
REPLACE W/80OTS TRAP
FOR CORING, REWIND B4,
BS, LOWER CORE
(3000 LOCS) » BS

SET ALL TRAP
SWITCHES TO OFF

B4 3 FILES

HSPAC SKIP UP

GRD BRING
IN NEXT RECORD

FROM
ONCLK
MACRO

SET TIME FOR FIRST
HALF-SEC TRAP, SET)
EN8 MASK, ACTIVATE|
S.C.1. INITIALIZE

SICOB
CHANGE REAL
TIME AT BTWN
TRAPS

READ IN SNAP
PROGRAM FROM B4

HSPAC SKIP B4

PAST FIRST 6 FILES

FILL MEMORY
FROM B4 - LOC OF
CORING
- 2085

START
CLOCK

85 » LOWER CORE
RESTORE 029
RETURN ADR TO

LOCN O

TURN OFF ECC

GRTN RESTORE
CONDITIONS

RESTORE XR4 ~
CLEAR ECC
SWITCH SSTEMP

WAS ECC ON
FOR B MEMORY

RETURN

PROGRAM
(Sheet 1 of 5)

2-75

MC 63-4

FROM MERCURY
TRYING TO PERFORM
RCT, ENB, PSLF

DISABLE,
SAVE XR4

Gsv
AVE CONDITIONS,

C (IC) AT XEC - 16, LOC (XEC)
-+ TEMP, C(XEC)» TEMP + 1,
C(STR) » XECS = LOC MASK

— ROUTINE NO. » XR1

ENB

PSLF

RCT

ENABLE MASK
- TEMP+3

8IT 210N

AC BITS S, TEMP+ 3+ AC
21 SET TO ONE

|

1S DCC INHIBITED PSLF MASK -+ MQ

TARA
REVERSE MASK

WAS BIT4 (ICC)
WHEN STR WAS
EXECUTED

TRA XACXA >
XACIC
C(LOCO) » XACX + 1
C(LOCO) > XACXA

GRTN RESTORE

{XAZ)

1S BIT ON FOR
NEXT OUTPUT §.C.

i

AC-+ XECS+ 5
AC -+ TEMP + 2

l

TRA XACX »
XACIC

ET TIMEOF NEXT
RAP TO INFINITY

1

YES

HAS TIME OF NEXT NO
TRAP BEEN SET TO

INFINITY

CONDITIONS SET TIME FOR
TRAP = PRES.
[TRAP TIME + OUT-
PUT CYCLE
!
ACTIVATE 5.C. 1,
TIB XACW 3 17, =t
ENABLE DCC,
WAIT FOR
TRAP ALL OUTPUT §.C.
(3, 4, 10, 11) EXAMINED
YACW
TIB CTAA~» 17,
ACTIVATE $.C. 1,
ENABLE FROM
PREVIOUS MASK
XACIC

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Sheet 2 of 5)

2-76

MC 63-4

FROM I MS CLOCK TRAP
ON DCC SUBCHANNEL 1

SET ECC ON
SAVE XR4

GSY
SAVE
CONDITIONS

LOC 3 AC
LOC 3+ L0C16
CTAAl
WAS TRAP FROM NO
DCC S.C. 1 MORTCC
1S 1/2 SEC. CLOCK
UP TO INFINITY SGENDX
NO. WORDS LEFT IN INPUT 8FR
= XR1, UPDATE 8-1/3 MS COUNT
.
CTAD
TOR : PRESENT TIME
1S BUFFER EMPTY
GRD
BRING IN NEXT
RECORD CTAG
NO. WORDS - XR2
~$.C.NO.~ XR4
IS BUFFER EMPTY
GRD
BRING IN NEXT
RECORD CTAJ
TIME OF TRAP
+R5 TABLE
A |
CTAK

WAS THAT THE LAST \ NO
WORD IN THE BUFFER

GRD
BRING IN NEXT
RECORD

CTAM

MOVE NEXT WORD OF MSG TO
DCC INPUT REGION

IS INPUT
REGION FULL

IS BUFFER EMPTY

GRD
BRING IN NEXT
RECORD

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Skeet 3 of 5)

2-77

MC

63-4

SET UP TIME FOR
NEXT OUTPUT
TRAP

2-78

1S DCC ENABLED

NO YES
—{ Is DCC INHIBITED }
ENABLING MASK - TEMP + 2
DCC NOT DISABLED NOR INHIB..
NO. 5.C. > XR2, ENABLING
MASK - XECS + 5
CTRI
YES _/ TiME FOR T
NEXT SUBCHANNEL
NO YES
(15 5.C. DIsABLED TRAP 1S
CTAZ LOST
WAS THIS A % PUT o0 IN RS
SEC TRAP TABLE ENTRY
CTBC CTBE
HIGH OR LOW ClTJmEENTa%S C TRAP YES NO
- > EXAMINED ALL S.C.
S e R
T ME OF N
CTBA TRAP
SET o AS TIME
FOR NEXT
TRAP
| YES /" \EXT TRAP LATER
AR _THAN PRESENT TIME
SET UP RETURN TO
MERCURY, INCLUDING
e AN L((:)CU3 ' SET INHIBIT SWITCH
TO OFF
{
TTR 16+ CTACX
1 cTau

UPDATE PRES. TIME,
TiB CTAUA» 17,
PSLE SUBCHAN)

GRTN RESTORE
CONDITIONS

ENABLE DCC, l
WAIT FOR TRAP
Y craua
|TIB CTAUB » 17, ENABLEJ
DCC, WAIT FOR TRAP
MORTCC |
OR __riB CTAA~ 17, RESTORE MaQ,
TIB * 16 L I
T 0OC 3 ENB FROM ENT MASK
(ocy /J CTAUX

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Sheet 4 of 5)

¥

EAVE AC S, 1~ 35-
SAVE MQ - XR1 -
XR2

P OR Q BIT ON

0->GSVS+5

©

co

MPUTE RETURN

RESTORE AC, MQ,

XR1,2,8&4

MC 63-4

-

HAD OVERFLOW
ORIGINALLY BEEN O

I

PTWO, 0 GSVS + 5

TURN OFF OVERFLOW
INDICATOR

&
S

SAVE XR4 - SET UP
TO REVERSE A 35-
BIT WORD

REORDER NEXT BIT

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC)

35 BITS REORDERED

l

READ A RECORD
FROM CI1 0

O @

SKIP TAPE B4
FORWARD ONE
FILE

2O -

REQUESTED NO. OF
FILES SKIPPED YET

(O

SUBROUTINES

CICTAA) - 17,
>R3+6, >
XECS! + 17

ENTER, CONVERT,
STORE NEW
REAL-TIME

INTERVAL

‘.

(Sheet 5 of 5)

2-79

MC 63-4

2.13 CONVERSION OF THE REAL-TIME MERCURY SYSTEM FOR OPERA-
TION WITH SIC

The following changes to the real-time Mercury system permit operation
under SIC control.

a)

b)

Programs Required:

1)

2)

3)

SIC —simulated input control program

SGSTRT —this is the first program executed in a SIC run and thus
provides the required initialization for SIC

MOSENT —this program is the equivalent of MOINIT in the real-
time system and should contain all the suppressions and indicator
settings found in MOINIT. Because time is not initialized ex-
ternally to the system, it must be preset. The cells AS2 and AS3
should be set equal to the starting simulation time; the total num-
ber of minutes in AS2 and the equivalent number of 1/2 seconds in
AS3.

Changes Required:

1)

2)

3)

The symbol MONORG, used by the system loader to transfer con-
trol to the system, must be equated to SGSTRT

The DCC subchannel mask MCACTYV must be set to activate those
input channels normally activated at the beginning of the phase in
which the simulation is to start

If the system is fo be run in the launch phase, the following change
must be affected. The high-speed input data blocks for subchannel
#1, TMHSGB and TMXSGB, must be moved up in memory as
follows:

ALTER TMHSGB, TMXSGB

BSS N
TMHSGB BSS 24,0

ggg %I can be replaced by BSSM + N
TMXSGB BSS 24,0

BSS M

Where N + M = 8, which represents the words remaining of the
original 32-word storage assignment not normally used by the
channel. N should be set equal to the number of traps SIC counts

2-81

MC 63-4

2-82

4)

9)

before updating the simulated traps. The maximum count of traps
between updatings therefore is eight.

The symbols C1 and C33 located in SIC must be equated to the new
decimal location of the tables TMHSGB and TMXSGB in that order.

If the records on the SIC input tape should change from 198, the
cell N (defined within SIC) would then have to be equated to the
new record length.

The decrement of the keys located on the operation console of the
7094 should be considered as a mixed number, that is, an integer
and a two-place fraction. Therefore, a decrement setting of 100
(octal) really is 1.00 octal and is the current setting to be used
for simulation.

MC 63-4

2.14 OPEN LOOP SIMULATION PROGRAM (OLS1)
MERCURY CONTROL CENTER

The purpose of the OLS1 program is to furnish data for the real-time oper-
ation of displays at the Mercury Control Center. The flow chart for the OLS1
program is shown in Figure 2-12.

2.14.1 Input Requirements
The SOS system is used with the OLS1 program. Input to OLS1 consists of:

a) B-GE launch data furnished by STL on column binary cards, to be
read from tape.

b) Monitor log tape generated by using STL launch data or actual launch
data as input. The log tape blocks physical records of ten 17-word
logical records each; each logical record consists of five words of
identification information and 12 words of data.

2.14.2 Output Requirements

High-speed output derived from B-GE data drives the displays located at
the Mercury Control Center.

2.14.3 Method

The OLS1 program has two distinct parts: one part generates B-GE data
displays directly from the STL card; the second part generates Goddard-to-
Mercury Control Center data from the log tape. When data from either of
these two parts is generated, the OLS1 program reads out that information, on
the high-speed lines, to be recorded on the A-Simulator at the Mercury Control
Center or to drive MCC displays. The program methods employed during each
phase are the same. The OLS1 program merely reads the input data and waits
for the 7094 clock to become equal to the time tag on the data. When the times
are equal, the data is transmitted from the computer to MCC.

2.14.4 Usage: Operator's Procedures

a) Call the MCC to arrange to record data on the A-Simulator tape or to
drive displays via the high-speed lines

b) Load the OLS1 program using SOS

2-83

MC 63-4

c)

d)

8

h)

1)

Mount STL tape on A6 if B-GE data is desired.
Mount log tape on A7 if normal high-speed output is required.

Mount blank tapes on B3 and B4 for logging high-speed output that is
transmitted.

Arrange with the MCC as to which type of data is to be sent.

Enter proper code in keys for program selection. (Key 35 for B-GE
data; Key 34 for display data).

Upon receipt of signal from the MCC, press START to begin program.

Save tapes A6, A7, B3 and B4 and label unless otherwise instructed.

All steps are accompanied by an error message printout.

2-84

START

PRINT
START-OF-JOB
MESSAGE

PROGRAM STOPS.
OPERATOR ENTERS
CODE IN
CONSOLE KEYS

NOT 1 OR 2

MC 63-4

ILLEGAL CODE-~
REENTER CODE
IN KEYS

FIGURE 2-12. OLS1 PROGRAM FLOW CHART (Sheet 1 of 4)

2-85

MC 63-4

B-GE DIRECT PHASE

READ
STL RETURN
TAPE T0
START
®
TAPE 4
READ L S1
CORRECTLY
EDIT
STL DATA.
PRINT START CLOCK
START-OF-JOB
MESSAGE o
‘ 7094 CLOCK
REW INCREMENTED.
iT:_ND Y RETEST FOR
TAPE DOES 7094 AGREEMENT
CLOCK AGREE | NO |

‘ WITH TIME TAG
ON DATA

RESET YES lee

MESSAGE

CLOCK
IS HS OUTPUT
BUFFER BEING 'YES, WAIT
USED
RESET Noﬁ
7094 PROGRAM LOOPS
CLOCK MOVE UNTIL HS MES-
MESSAGE SAGE HAS BEEN
{ TO HS OUTPUT TRANSMITTED, |®®®
BUFFER THEN DCC TRAP
RESET V OCCURS
TRANSMISSION
SWITCH ACTIVATE Y
HS OUTPUT
{ SUBCHANNEL @
PUT
TRANSFER
TO bCC INCREMENT
TRAP MESSAGE
PROCESSOR CLOCK
AT LOC. 4

FIGURE 2-12. OLS1 PROGRAM FLOW CHART (Sheet 2 of 4)

2-86

MC 63-4

INTERRUPT
FROM MAIN
PROGRAM

HS OUTPUT CLOCK

DEACTIVATE HS OUT-

PUT SUBCHANNEL UPDATE CLOCK

RESTORE CHANNEL
TRAPS

\ RETURN TO MAIN
\ /®®® PROGRAM AT POINT
’ OF INTERRUPT

TRAP PROCESSOR: DCC TRAPS MAY OCCUR AT ANY POINT IN MAIN PROGRAM

FIGURE 2-12. OLS1 PROGRAM FLOW CHART (Sheet 3 of ¢4)

2-87

MC 63-4

GODDARD-TO-MERCURY CONTROL CENTER PHASE

REWIND
LOG TAPE

1

RESET
TRANSMISSION
SWITCH

!

RESET
7094
cLocK

!

PRINT
START-OF-J0B
MESSAGE

!

FILL
LOG TAPE
BUFFER

Y

| RESET
BUFFER
COUNT

Y

ENABLE
FOR DCC
TRAPS

r————n

MOVE MESSAGE
OuT OF
INPUT BUFFER

!

REFILL
BUFFER IF
REQUIRED

IS HS OUTPUT
MESSAGE
ODD FRAME

IS HS OUTPUT
BUFFER
BEING USED

YES,
WAIT

FILL
HS OUTPUT
BUFFER

—™

PUT TRA
TODCC
TRAP
PROCESSOR
AT LOC.
4

7094 CLOCK
INCREMENTED.
RETEST FOR
AGREEMENT

DOES 7094
CLOCK AGREE

—

MOVE MESSAGE
OUT OF
INPUT BUFFER

1

REFILL
BUFFER IF
REQUIRED

IS MESSAGE
HS OUTPUT EVEN
FRAME

ISHS OUTPUT
BUFFER
BEING USED

FILL
HS OUTPUT
BUFFER

!

ACTIVATE
HS OUTPUT
SUBCHANNEL

1S 7094
CLOCK TiME

GREATER THAN
MESSAGE TIME TAG,

ACTIVATE
HS QUTPUT
SUBCHANNEL

|

WITH TIME ESSOGH R2¥ASJOPS. °
" Tll
TAG ON DATA TO BEGI

FIGURE 2-12. OLS1 PROGRAM FLOW CHART (Sheet 40f4)

2-88

MC 63-4

2.15 CLOSED LOOP SIMULATION PROGRAM (CLS3)-
MERCURY CONTROL CENTER

The purpose of the CLS3 program is to generate a special purpose mag-
netic tape which contains B~-GE to Goddard data, B-GE display data, IP 7094
data, IP 7094 false computer words, and flight flags. This tape will be played
on the B Simulator at the Mercury Control Center to supply real-time data for
the Goddard computers and the B-GE direct displays during a simulated launch.

The flow chart for CLS3 is shown in Figure 2-13.

2.15.1 Input Requirements

The SOS system is used with the CLS3 program. Input required by the
Closed Loop Simulation program are:

a) STL-furnished B-GE Direct and B-GE -to-Goddard data on punched
cards which are to be read from tape.

b) IP 7094 data produced by the Shred program and read in from tape.

c) Flight flags on cards furnished by NASA and read from tape. Columns
1-6 of the card contain time in milliseconds since liftoff and columns
8 and 9 contain the flight flag number in decimal.

2.15.2 Output Requirements

The output of CLS3 is a single-record 7-track tape which contains IP 7094
launch data, B-GE display data, B-GE data, a timing track, a flight flag track,
and an IP 7094 false computer word track. IP 7094 and B-GE-to-Goddard for-
mats are shown in Figures 2-14 and 2-15, respectively.

2.15.3 Method

The CLS3 program runs in two phases. The first phase under sense
switch option extends the IP 7094 Shred tape with false computer words. The
second phase reads the three sources of data into core storage and arranges
the messages in the block according to the time when they should be read out.
Four-block buffers are continuously being filled and written out. The buffers
are treated cyclically by the program; the filling and the writing out on tape are
always two blocks out of phase with one another.

2-89

MC 63-4

2.15.4 Usage: Operator's Procedures
a) Mount STL tape on B3.

b) Mount IP 7094 tape on A6 if the tape is not to be extended. Mount
IP 7094 tape on B6 and a blank on A6 if the tape is to be extended.

c¢) Mount flight flag tape on AT7.

d) Mount a blank tape for output on Cl1 and set the density to 200 bits per
inch.

e) Load program using SOS.
f) To extend IP 7094 Shred tape, depress sense switch 1 and set the keys
to the time at which the extension is to begin. Do not depress sense

switch unless the Shred tape is to be extended.

g) At the completion of the run, remove C1 and send it to MCC.

2-90

MC 63-4

IS IP 7094 YES EN
SHRED TAPE TO > e
KEYS
BE EXTENDED? /
NO
® -
Y
REWIND TAPES. WRITE
SET SWITCHES READ BLOCK BLOCK
FROM Bé ON
i Aé
CLEAR BLOCKS
1,2 &3 IS TIME GREATER NO
THAN EXTEND
” TIME
SEE FILL 'E/
FILL BLOCKS | o400 PROGRAM ON S
182 FOLLOWING PAGE 1
* EXTEND TAPE
TO 1000 SEC
WRITE BLOCK 4 WITH FALSE COM-
ON OUTPUT PUTER WORDS
TAPE
C= 30N IST PASS
> = 4 ON 2ND PASS
[= 1T SgNagg PASS Erc
,2,1,... ETC.
CLEAR AND FILL coe ON SUCCESSIVE
BLOCK C PASSES
FOUR-BLOCK
{ OUTPUT
LOAD OUTPUT A= 10N 1ST PASS ETC. BUFFER ! TBLC1
TAPE CHANNEL |00® sTSEé'ezs'é‘(#é"%xs‘s‘é'é
WITH BLOCK A LCH INSTRUCTION 2 |TBLC2
MAINTAINS CONTINU-
e
HAS ALL INPUT 3 |T1BLC3
INFORMATION
BEEN ENTERED
4 | TBLC 4

YES

WRITE REMAIN-
ING BLOCKS ON
OUTPUT TAPE

FIGURE 2-13. CLS3 PROGRAM FLOW CHART (Sheet I of 2)

2-91

MC 63-4

)

INITIALIZE ADDRESSES

FOR CURRENT INPUT
OUTPUT BLOCK

—l,
I |

FLIGHT | 'P 7094

FLAGS
YES f IS CHANNEL A
\TRANSMITTING DATA

}NO

ves/” FLIGHT FLAGS TRANS-

MITTED INTO BLOCK
L {NO

MOYE ONE RECORD OF
FLIGHT FLAGS INTO BLOCK

7094

YEsf IS CHANNEL B
\TRANSMITTING DATA

NO
) (ONE CONTINUOUS
RECORD OF | -
\ YES -GE DATA TRANS- OUTPUT) "cXVED DATA
MITTED INTO BLOCK TAPE FROM THREE
SOURCES)
NO

Y

MOVE ONE RECORD OF
B-GE DATAINTO BLOCK

—
I

YES IS CHANNEL A
TRANSMITTING

y NO

YES IP 7094 DATA TRANS-)

MITTED INTO BLOCK

'NO

MOVE ONE RECORD OF
IP 7094 DATA INTO BLOCK

=
1

NO ALL DATA NOW IN YES
OUTPUT BLOCK

!

FIGURE 2-13. CLS3 PROGRAM FLOW CHART \(Sheet 20f2)

2-92

MC 63-4

EIGHT-BIT WORD TRANSFERS FROM DATA EIGHT-BIT WORD TRANSFERS FROM DATA
RECEIVER FIRST SUBFRAME RECEIVER SECOND SUBFRAME
1|1 TELEMETRY 8 1|1 D 8
2|9 TELEMETRY 16 2 {9 D 16
3|7 TELEMETRY 24 3 |7 D 24
4] 25 TELEMETRY 32 4|25 D 32
5| 33 TELEMETRY 40 5(3 b0 3|1 E 4
6| 41 TELEMETRY 48 6 |5 E 12
7| 49 TELEMETRY 56 7 113 E 20
8| 57 TELEMETRY 64 8 | 21 E 28
9| 65 TELEMETRY 72 9 | 29 E 36
101 A 8 10 |1 F 8
1mie A 16 n o9 F 16
12| 17 A 24 12 | 17 F 24
13| 25 A 32 13 | 25 F 32
1433 A 361 B 4 14133 F 36(1 N 4
15 5 B 12 15 |5 N 12
16 | 13 B 20 16 | 13 N 20
17| B 28 17 | N 28
18 | 29 8 36 18 | 29 N 36
19 |1 C 8 19 |1 CHECKSUM I 8
2|9 c 16 2 |9 CHECKSUM 3, 16
21 | 17 c 24 21 |17 CHECKSUM 3, 24
2| 25 C 32 22 | 25 CHECKSUM I, 32
2333 C 3|0 0 0 O 22 [33 X 3o 0o o 0
24(0 0 0 |1 |D* 5 24 /0 0 o0 |1 D* 5

THE ABOVE CONSTITUTES A COMPLETE MESSAGE FRAME AND IS TRANSMITTED EVERY 400
MILLISECONDS. EACH SUBFRAME CONSISTS OF 192 SERIAL BITS PRECEDED BY A SYNC SIGNAL.
THE QUANTITIES REPRESENTED BY A, B, C, D, E, F AND N ARE RESTRICTED INFORMATION AND
ARE SPECIFIED IN OTHER DOCUMENTS.

*SEE NOTE 1 FOR MAKEUP OF ID WORD.

FIGURE 2-14. IP 7094 DATA, MERCURY CONTROL CENTER-TO-GODDARD
MESSAGE FORMAT (Sheet I of 2)

2-93

MC 63-4

SEE NOTE 2 FOR FORMAT OF BITS 1 TO 72 OF FIRST SUBFRAME IN ABSENCE OF TELEMETRY
DATA AND NOTE 3 FOR FORMAT IN ABSENCE OF QUANTITIES A, B, C, D, E, F AND N.

NOTES

1. THE FIVE-BIT IDENTITY (ID) WORD IN EACH SUBFRAME CONVEYS THE FOLLOWING INFORMA-
TION:

A DATA FROM IP 7094 HIGH-SPEED BUFFER AND RETRANSMITTER

BIT 1: A ZERO SIGNIFIES IP 709 DATA FORMAT
A 1 SIGNIFIES RAW RADAR FORMAT
BIT 2: A 1 SIGNIFIES SECOND SUBFRAME
BIT 3: A 1SIGNIFIES FIRST SUBFRAME
BITS 4 AND 5: INDICATE SOURCE OF RAW RADAR DATA

2. IF NO DATA IS RECEIVED FROM THE TELEMETRY EVENT TRANSMITTING BUFFER, THE HIGH-
SPEED BUFFER AND RETRANSMITTERS ARE ARRANGED TO TRANSMIT ZEROES IN THE BIT PO-
SITIONS OCCUPIED BY TELEMETRY EVENT DATA BITS 1 THROUGH 40 AND 43 THROUGH 72.
ONES ARE | TRANSMITTED IN POSITIONS 41 AND 42, RESULTING IN ERRONEOUS PARITY FOR
THE TELEMETRY EVENT DATA MESSAGE.

3. IN THE ABSENCE OF DATA QUANTITIES A, B, C, D, E, F AND N, THE COMPLETE MESSAGE
FRAME IS TRANSMITTED EVERY 400 MILLISECONDS. TELEMETRY DATA CONTINUES TO BE
TRANSMITTED. ZEROES WITH 1'S INTERSPERSED IN CERTAIN POSITIONS ARE TRANSMITTED
IN PLACE OF THE MISSING DATA QUANTITIES. THE FOLLOWING BITS APPEAR AS 1'S IN THIS

EVENT:
SUBFRAME EIGHT-BIT WORD NO. QUANTITY BIT WITHIN QUANTITY
1 12 A 24
1 15 B 12
1 18 B 36
1 21 o 24
2 3 D 24
2 6 E 12
2 9 E 36
2 12 F 24
2 15 N 12
2 18 N 36
2 19 CHECKSUM 1

FIGURE 2-14. IP 7094 DATA, MERCURY CONTROL CENTER-TO-GODDARD
MESSAGE FORMAT (Sheet 2 of 2)

2-94

MC 63-4

EIGHT-BIT WORD TRANSFERS FROM DATA EIGHT-BIT WORD TRANSFERS FROM DATA
RECEIVER: FIRST SUBFRAME RECEIVER: SECOND SUBFRAME

1 1 TELEMETRY 8 1 1 L 8
219 TELEMETRY 16 219 L 16
3|17 TELEMETRY 24 3| 17 L 24
4 |25 TELEMETRY 32 4|1 M 8
5] 33 TELEMETRY 40 5|9 M 16
6 | 41 TELEMETRY 48 6 | 17 M 24
7 | 49 TELEMETRY 56 7 N 8
8 | 57 TELEMETRY 64 8 {9 N 16
9 | 65 TELEMETRY 72 9|17 N 24
10 |1 DISCRETE WORD 8 10 (1 CHECKSUM 8
n G 8 1m |9 CHECKSUM 16
12 | 9 G 16 12 |17 CHECKSUM 24
134117 G 24 3|1 1T 1 1 1 1 1 1
14 | 1 H 8 411 1t 1 1 1 1 1 1
1519 H 16 51 1. 1 1 11 1 1
16 | 17 H 24 i1 1 1 1 1 1 1 1
17 |1 J 8 71 1 1 1 1 1 11
18 {9 J 16 i1 1 1 1 1 1 11
19 {17 J 24 i1 1 1 1 1 1 1
2 |1 K 8 2 (1 1 1 1 1t 1 1
21 | 9 K 16 21 T 1 1 1 1 1 1 1
22 | 17 K 24 2 /1 11 1 1 1 1 1
2211 1 1 1 1 11 1 2!/1 1 1 1 1 1 11
24 |0 0 O 1 1D* 5 24 |10 0 O} 1 ID* 5

THE ABOVE CONSTITUTES A COMPLETE MESSAGE FRAME AND IS TRANSMITTED WITH AN IN-
TERVAL OF 500 * 100 MILLISECONDS BETWEEN THE START OF ONE MESSAGE AND THE START OF
THE NEXT MESSAGE. EACH SUBFRAME CONSISTS OF 192 SERIAL BITS PRECEDED BY A SYNC S$IG-
NAL. THE QUANTITIES REPRESENTED BY G, H, J, K, L, M AND N ARE RESTRICTED INFORMATION
AND ARE SPECIFIED IN OTHER DOCUMENTS.

*SEE NOTE 1 FOR MAKEUP OF ID WORD.

SEE NOTE 2 FOR FORMAT OF BITS 1 TO 72 OF FIRST SUBFRAME INABSENCE OF TELEMETRY DATA
AND NOTE 3 FOR FORMAT IN ABSENCE OF QUANTITIES G, H, J, K, L, M AND N.

FIGURE 2-15. B-GE DATA, MERCURY CONTROL CENTER-TO-GODDARD
MESSAGE FORMAT (Sheet 1 of 2)

2-95

MC 63-4

NOTES

1. THE 5-BIT IDENTITY (ID) WORD IN EACH SUBFRAME CONVEYS THE FOLLOWING INFORMA- -

2,

TION:

DATE FROM B-GE HIGH-SPEED BUFFER AND RETRANSMITTER.

BIT 1: ALWAYS A ZERO

BIT 2: A 1SIGNIFIES SECOND SUBFRAME
BIT 3: A 1SIGNIFIES FIRST SUBFRAME
BIT 4: ALWAYS A ZERO

BIT 5: ALWAYS A ZERO

IF NO DATA IS RECEIVED FROM THE TELEMETRY EVENT TRANSMITTING BUFFER, THE HIGH-
SPEED BUFFER AND RETRANSMITTERS ARE ARRANGED TO TRANSMIT ZEROES IN THE BIT PO-
SITIONS OCCUPIED BY TELEMETRY EVENT DATA BITS 1 THROUGH 40 AND 43 THROUGH 72.
ONES ARE TRANSMITTED IN POSITIONS 41 AND 42, RESULTING IN ERRONEOUS PARITY FOR
THE TELEMETRY EVENT DATA MESSAGE.

IN THE ABSENCE OF DATA QUANTITIES G, H,J,K,L, M AND N, THE COMPLETE MESSAGE FRAME
IS TRANSMITTED EVERY 650 MILLISECONDS. TELEMETRY DATA CONTINUES TO BE TRANS-
MITTED. ZEROES WITH 1'S INTERSPERSED IN CERTAIN POSITIONS ARE TRANSMITTED IN
PLACE OF THE MISSING DATA QUANTITIES. THE FOLLOWING BITS APPEAR AS 1'S IN THIS
EVENT:

SUBFRAME EIGHT-BIT WORD NO. QUANTITY BIT WITHIN QUANTITY
1 13 G 24
1 16 H 24
1 19 J 24
1 22 K 24
2 3 L 24
2 6 M 24
2 9 N 24
2 10 CHECKSUM]

FIGURE 2-15. B-GE DATA, MERCURY CONTROL CENTER-TO-GODDARD
MESSAGE FORMAT (Sheet 2 of 2)

2-96

MC 63-4

2.16 CLOSED LOOP SIMULATION PROGRAM (BCLS2)
BERMUDA TO GODDARD

BCLS2 writes a continuous-record, 3-channel tape which, when read by the
B-Simulator, is converted to Verlort and AN/FPS-16 radar signals to be re-
corded by the A-Simulator tape drive. When this tape is transported to Ber-
muda, it can be read by the operational data recorder and the signals generated
can be used as radar input to Goddard.

The flow chart for BCLS2 is shown in Figure 2-16.

2.16.1 Input Requirements

Input to BCLS2 is a Bermuda SIC input tape containing Verlort and AN/FPS-
16 radar data blocked in 198-word physical records. The logical records have
three identification words each and a variable number of data words. Both AN/
FPS-16 and Verlort radar input records are 15 words long, including identifi-
cation. The SOS system must be used with this program.

2.16.2 Output Requirements

The B-Simulator output tape is a single-record, 3-track tape. The three
tracks are Verlort and AN/FPS-16 radar messages and the timing track. The
radar message format is shown in Figure 2-17.

2.16.3 Method

The BCLS2 program runs in two phases. The first phase reads the SIC
tape and duplicates only the radar data. The second phase reads the duplicated
SIC tape and extracts the Verlort and AN/FPS-16 radar data from it. The pro-
gram then writes this data, along with a timing track, on a timed output tape.
BCLS3 has a 4-block output buffer which is treated cyclically. The program is
always filling one block at the same time another is being written on tape; the
filling and the writing on tape are always accomplished two blocks out of phase
with one another.
2.16.4 TUsage: Operator's Procedures

a) Mount Bermuda SIC tape on B5.

b) Mount a Blank on A5.

c¢) Mount intended output tape on B3.

2-97

MC 63-4

d) Load program using SOS.
e) Printout indicates when program is finished.

f) Remove B3, label, and send to the Mercury Control Center.

2-98

MC 63-4

REWIND TAPES,
SET SWITCHES

FOUR-BLOCK
OUTPUT BUFFER 1

DUPLICATE RADAR
PORTIONS OF SIC 2
[INPUT TAPE ONTO A-5

FILL BLOCKS 4
1 AND 2

]
o

SET i

OUTPUT TAPE FORMAT

o

WRITE B, ON B /
OUTPUT TAPE A__AN/FPs-16 {
g8 TIMING TRACK \

] 4 VERLORT -\

FILL 2)
BLOCK (i +2) ! /

/7

HAS ALL INPUT
INFORMATION
BEEN ENTERED?

YES

NO

SET i=(i+1)

[

REWIND TAPES

FIGURE 2-16. BCLS2 PROGRAM FLOW CHART

2-99

MC 63-4

2.17 READ LOW-SPEED SIC TAPE (RLSST)

RLSST generates SIC input tapes. The prime purpose of the program is to
convert the TTY message data contained on the SIC tape to BCD. In addition, a
BCD tape containing the simulated radar observations is prepared.

2.17.1 Input Requirements

The binary SIC tape constitutes the only input of this program. The input
tape consists of simulated Verlort and AN/FPS-16 radar observations grouped
into physical records, 198 words in length. Records are composed of twenty-
two, 9-word logical records.

2.17.2 Output Requirements

RLSST utilizes SE9OU2 (DNOUT) to prepare the BCD output tape. Access
to all information included in the radar messages can be obtained providing it
is tape listed.

2.17.3 Method

The program reads and extracts radar data from the SIC tape. Each logi-
cal record on the SIC tape contains a subchannel number that identifies the line
over which the data is being sent. The data is packed into the storage buffer
for any given subchannel. When a 34-word message is completed, the data is
converted to BCD and written on the output tape.

The program employs the SOS system, with an additional blank on B-3

(output), and the input on C-10. Netiher the sense switches nor the console
keys are required for operation of this program.

2-101

MC 63-4

fst————————— Bits 28 to 35 -
Time Time
1 17 24
T T Time | Time
2 M M n 16
Time Time
3 3 10
T T |[Range Range| 0 Time | Time
4 M M 17 19 T 1 2
Range | Range
5109 ™1 16
T T Range Range
6 M M 3 8
Az Az |Range|Range
7 n 16 1 2
T T Az | Az
8 M M 5 10
El | El Az | Az-
9 |13 16 | 1 4
T T El El
10 M M 7 12
Range | 0 El El
11 20 T] 6
T T [Range Range
12 M M1 4 7 1 19
Range Range
13 6 [1 13
T T [Range Range Range
14 M1 M| oD 1 5
Az Az
s 6 || S|S S Sp S|
T T Az Az
16 M M 10 1 15
Az Az
17 2 9
T T El El S S Az
18 | M M| 15 17 1
El El
19 7 14
T T El El
20 M M 6
EC EC
2 ? B DA 16
EC EC
22 1 8
EC EC
23 9 16
GSC
EC EC

FIGURE 2-17. HIGH SPEED BERMUDA INPUT FORMAT FROM DCC

2-102

Section 3
UTILITY PROGRAMS

Utility programs complement monitor and computational programs in the
Mercury Tracking System. As such, they are service programs which pro-
duce input tapes, process output tapes, and satisfy various specialized needs.

Many utility programs are recorded on a C1 utility tape to provide availa-
bility of utility programs as needed. Each such utility program appears on the
Cltape as a single record; loading instructions are at the beginning of each
record.

Program selection and loading from the C1 utility tape is accomplished
with the use of a call card. The information contained on this type of card
positions the tape to the desired record and initiates the loading action. Before
positioning and after loading, acall card rewinds the C1 tape. Once loaded,
each program is identified on the on-line printer before its execution.

[*
¢

3.1 PROGRAM TO PRINT SELECTED DCC SUBCHANNEL INPUT-OUTPUT
DATA FROM A MERCURY LOG TAPE (MXCHER)

MXCHER reads the B6 log tape and selects and prepares for off-line
printing in octal the input-output data identified with selected DCC subchannel
numbers. An option is provided to permit either searching the tape for several
subchannel numbers in one pass or of searching separately for each requested
number. In the first method, entries are printed in the order in which they ap-
pear on tape; in the second, all entries for a given subchannel are printed to-
gether.

The flow chart for MXCHER is shown in Figure 3-1.

3.1.1 Input Requirements

Input to MXCHER includes the B6 log tape produced during a Mercury run.

3.1.2 Output Requirements
Output from MXCHER is produced on A2. Entries are printed vertically
across the page, six to a page. Marginal numbering is provided, and on- and
off-line comments are produced as required.
3.1.3 Method
The first record on the B6 tape is tested to ensure readability and to set
the density mode. When processing, tests are made for redundancy, EOF,
EOT, and blank tape conditions. On-line comments are produced as required,
and all conditions, except an output redundancy, result in a program stop.
3.1.4 Usage
MXCHER is entered with a call card read on line.
a) Storage Required—2101 locations
b) Operating Notes:
1) Sense Switches are not used
2) Entry Keys:

S—when up, subchannels are printed in the order in which they

3-3

MC 63-4

occur. When down, a separate pass is made for each selected

subchannel.

1 to 35—correspond to subchannels to be printed

c) Stops: (all stops are accompanied by on-line print)

200448 HPR

200318 HPR
200368 HPR
200548 HPR
202658 HPR
203038 HTR
203558 HPR

203578 HPR

4018

4028

4038

4048

4058

4068

4078

4108

Waiting for request word in keys

Cannot read B6

B6 is a BCD tape

No entry has been made in keys

B6 was running away

FINAL STOP (press start to do another)

Redundancy or wrong word count (see
on-line print)

A2 End of tape

ENTER

MXCHER

P1A

WRITE HEADING ON
OUTPUT TAPE, REWIND
LOG TAPE. SET LOG TAPE
TO PROPER DENSITY MODE
AND TEST READABILITY

GOOD

PRINT ON-LINE THAT
PROGRAM |S READY TO ACCEPT
INFORMATION FROM KEYS
AND STOP (HPR 257)

!

ENTER KEYS AND
FLIP TO AC

PRINT MESSAGE
ON-LINE AND STOP
(HPR 260)

|

-<—GON SOLE

>0
KEYS: 0

C(AQ) - S.I.
0 »> RPEAT

<0

A

p —*RPEAT

, 135

@

AGAIN

LOCATE HIGHEST ORDER
1BITIN AC, LOAD
S.l. WITH A WORD HAVING
A BIT IN THAT POSITION,
ZERO EVERYWHERE ELSE.
DELETE THAT BIT FROM
CONTENTS OF RPEAT

NICE

WRITE, ON OUTPUT TAPE, A
REMARK DESIGNATING THE
SUBCHANNEL(S) BEING SOUGHT
ON THIS PASS.

!

INITIALIZE LOCATIONS PAGE,
HOMNY, EOF, EOT, IMPAS AND
EXECUTE CHANNEL. B TIMING
LOOP TO AVOID INDICATION
THAT “TAPE IS RUNNING AWAY""
ON FIRST LOG TAPE READ

D R R TR

MC 63-4

IF LOG TAPE IS BCD OR
IS OTHERWISE UNREADABLE,
PRINT MESSAGE ON-LINE
AND STOP. PRESSING START
RETURNS PROGRAM
TO BEGINNING

|F RPEAT = 0 PROGRAM
WILL SEARCH FOR ALL
SELECTED SUBCHANNELS
IN ONE PASS. 1F NONZERO,
DOES A SEPARATE PASS
FOR EACH SELECTED

SUBCHANNEL.

“PAGE" IS INITIALLY SET
TO A LARGE NON-ZERO
NUMBER. OTHERS ARE

SET TO ZERO

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Skeet I of 6)

3-5

MC 63-4

r
READ A RECORD FROM LOG
TAPE WITH COMMAND 106

;1
GO 1
PERFORM ERROR TESTS
(SUBROUTINE ERT)
3 1 REDUNDANCY EXIT 1
2 EOF EXIT
3 EOT EXIT
4 NORMAL EXIT 2

INITIATE READING OF @

NEXT LOG RECORD WITH
COMMAND IN 105

17049 » IR1, OBTAIN INPUT BLOCK
ADDRESS FROM 106, ADD 1704,
STORE_ADDRESS IN “HERE" & *'GOGO""
. |

GOGO |]

FIRST WORD OF iTH 17-WORD BLOCK

CURY=17(110) |eeeees TOAC(i=1,2,..., 10). MASK OUT ALL

BUT SUBCHANNEL NO. COMPLEMENT
OF SUBCHANNEL NO. - IR2

!

>
(SUBCHANNEL NO.: 36 ’

N

<

NO {IS IT ASELECTED SUBCHANNED

YES ‘

SET UP INDICES AND ADDRESS
OF NEXT AVAILABLE LOCATION
IN INTERMEDIATE BUFFER
HERE !
TESTING IF TRANSFER THIS 17-WORD BLOCK TO
INTERMEDIATE INTERMEDIATE BUFFER.
BUFFER FULL INCREMENT HOMNY (COUNT OF THE
: NUMBER OF 17-WORD BLOCK IN
: _LNlﬁRMEZLAiEMEEEL—
Teeeaesiiinananas C C(HOMNY): 5
|
BACK ~Y 24 TESTING IF ALL TEN
DECREMENT > CORY: g) ,,,,,,,,,,,, 17-WORD BLOCKS IN
C(IRY) BY 17, THIS RECORD HAVE
|

#
:) U . TESTING IF
cleom: 0 END-OF-LOG TAPE
~ ¥ LS RFFN DETECTED |

INTERCHANGE 1/0
COMMANDS IN LOCATIONS
105 AND 106

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Skeet 2 of 6)

3-6

OUTEM

C(HOMNY): 0)

1

CONVERT CONTENTS OF
INTERMEDIATE BUFFER TO
BCD FORMAT FOR OUTPUT.

(SUBROUTINE CONIT)

!

INITIATE WRITING
OF OUITPUT T

. |

MC 63-4

TESTING IF ANYTHING IS
IN INTERMEDIATE BUFFER.
COULD BE EMPTY
ON E.O.F ORE.O.T.

(C(EOF): 0 j

— ¥

TESTING IF AN END-OF-FILE
HAS BEEN DETECTED
ON 1 OG TAPE

C(IMPAS): 0)
il

INITIALIZE INTERMEDIATE
BUFFER ADDRESS COUNTER.

I NTERCHANGE OUTPUT
1/0 COMMANDS

IGNL K|

PRINT ON-LINE THAT LOG TAPE WAS

RUNNING AWAY. POSITION LOG TAPE

SO THAT OPERATOR MAY MANUALLY
WRITE AN END-OF-FILE

1

STOP
(HPR 261,0)

d

TESTING |F ANYMORE
SUBCHANNELS ARE

TO BE SEARCHED FOR

ND 1
REWIND LOG TAPE. WRITE
A PAGE EJECT RECORD AN
OUTPUT TAPE

1

Q C(EOT): 0)

TESTING IF “LOG TAPE
RUNNING AWAY*' CONDITION
HAS BEEN DETECTED

TESTING IF END-OF-LOG
TAPE HAS BEEN
ENCOUNTERED

.)
C C(RP E*AT).])

WRITE END OF RUN
REMARK ON OUTPUT
TAPE AND PRINT ON-LINE

1

~(e)

FINAL STOP
(HPR 262,9)

PRESSING START PERMITS
DOING ANOTHER RUN

FIGURE 3-1. MXCHER PROGRAM FLOW CHART /Sheet 3 of 6)

MC 63-4

TSX ERT, 4
(REDUNDANCY RETURN)
SUBROUTINE ERT (END-OF-FILE RETURN)
(END-OF-TAPE RETURN)
CALLING SEQUENCE: (NORMAL RETURN)
PURPOSE: PERFORMS INPUT READING ERT
ERROR TESTS. [1 IR |
TOOP ALLOWS oK
CHANNEL B TO RE- - YES
MAIN IN OPERATION GTANNEL B NO _ /” CHANNEL B END-OF-
APPROX. 1 SEC. (pSanme S TAPE TRIGGER ON
BEFORE CUTTING IT{........... NO
S0 ST T e :
DA A ELAY Il CYCLES T\ YES
THE LOG TAPE IS I Y | THLE TRIGGER ON P48
>
DECREMENT . NO
CURT) BY 1 CURD: 1) Y ves
3 (Cmsgmmege)y =)
RESET CHAN. B BACK- 0
SPACE LOG TAPE
[] 0 > KRED (REDUNDANCY
COUNT). OBTAIN ADDR
[SET IMPAS NONZERO | OF LAST WORD READ IN.
SUBTRACT ADDRESS OF
ENOT LAST WORD EXPECTED,
TAKE ‘
MAKE EOT NONZERQ END-OF-FILE [+
ENIT

CHANNEL B
END-OF-FILE

s R ON

Y 4
@ BACKSPACE LOG TAPE.

PRINT WRONG RECORD
SIZE COMMENT ON-LINE

ED
TURN OFF BACKSPACE LOG TAPE.
REDUNDANCY INCREMENT KRED
TRIGGER, IF ON (REDUNDANCY COUNT)
C C(KRED): 5 NORMAL
------- EOT EXIT RETURN
PERSISTENT -
REDUNDANCY REDUNDANCY
COMMENT
P4D
ODEAR
0 - KRED I
STOP WRONG REC. SIZE
(HPR 263,9) > 'OR PERSISTENT

REDUND. STOP

» o)
TEST SENSE SWITCH 2)-veereesrsnee seereee-[SW. 2 DOWN TERMINS.
{ \. THIS PASS; UP TO BYPS
DOWN ITH!'S REC. & CONTINUE
READ NEXT RECS e FILE
REC.-
TURN OFF REDUND. ARE EOF NONZERD.
TRIGGER, IF ON TURN OFF CHAN. B
: REDUND. TRIGGER, IF ON
TAKE
......... REDUNDANCY END-OF-FILE
vzl LA I (S D o

FIGURE 3.1. MXCHER PROGRAM FLOW CHART (Sheet 4 of 6)

3-8

TISTHES, 3,
IR2 IS THE OUTPUT
WORD INDEX
IR4 1S TO INDEX 6
17-WORD BLOCKS

ACROSS THE PAGE

SUBROUTINE CONIT
TSX CONIT, 4

CALLING SEQUENCE: (RETURN)

PURPOSE: CONVERT CONTENTS OF INTERMEDIATE
BUFFER OF BCD-OCTAL AND STORE
THEM IN APPROPRIATE POSITIONS OF
OUTPUT BLOCK.

BODY
iTH WORD OF jTH 17-WORD
-4 BLOCK - MQ(i=12..., 17

CONIT @ :
SAVE CONTENTS :
OF INDEX VER -
REGISTERS (INDYCATOR FOR 17
INITIALIZE WORDS))
ROUTINE WITH | 117, - IR4 8519 - IRI
ADDRESSES OF 19,9 - IR2
INTERMEDIATE
6 > IR4
BUFFER AND
OUTPUT BLOCK
INCREMENT INTERMED
BUFFER ADDRESS (TO PICK
UP (i + 1)ST WORD NEXT
TIME THROUGH). INCRE-
OUTPUT ADDRESS
C(NUFF) - IR4
> TESTING FOR
CUR4: 1)+l cCONVERSION
FINISHED
DECREMENT RESIOR
C(IR4) BY 1 INDEX
REGISTERS
RETURN
TO MAIN
-, ceene] pRORAM

ANDj = 1,2,..., 10)

1

OCTAL CONSTANT TO GEN-
ERATE BCD BLANKS » AC

Y

LONG LEFT SHIFT 2 PLACES

YES AC SIGN + }

NO }

SET AC SIGN + AND
GENERATE BCD MINUS
SIGN IN AC

I C(AC) » OUTPUT BLOCK

SHIFT LOOP TO TONVER]
THE NEXT 5 OCTAL DIGITS
TO BCD-OCTAL. INSERT
A BCD BLANK AT THE END

C(AC) » OUTPUT BLOCK]

SHIFT LOOP TO CONVERT
THE LAST 6 OCTAL DIGITS
TO BCD-OCTAL

1

[C{AC) > OUTPUT BLOCK
RESTR Y

DECREMENT C((R1) BY 17
TO PICK HP iTH WORD OF THE

NEXT L(j + 1)ST] 17-WORD
BLOCK DECREM C(IR2) BY 1

Y

TESTING FOR END
OF OUTPUT LINE

DECREMENT |
Cl{IR4) BY 1 "'< CIR4): 1)
<

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Shee: 5 of 6)

3-9

MC 63-4

SUBROUTINE WRIT
CALLING SEQUENCE:

TSX WRIT
(RETURN)

, 4

PURPOSE: PERFORM ERROR TESTS ON LAST QUTPUT TRANSMISSION
AND INITIATE CURRENT OUTPUT OPERATION.

WRIT
| SAVE C{IRT). C(IR2) J
P6C
[DELAY UNTIL CHANNEL A mscormecﬂ
CHANNEL A END-OF- \YES
TAPE TRIGGER ON
NO
< CHAN. A REDUNDANCY \YES
TRIGGER ON
NO
C(HOMNY): 5
INCREMENT S
C(PAGE) BY 1 C(HOMNY): 0
< = COMPUTE 1/0 COMMAND
CIPAGE): 3 WORD COUNT FOR THE
INCOMPLETE BLOCK
> [COUNT = 3 x C(HOMNY)— 1]
1 PAGE {
NDONT
STORE THIS WORD
WRITE AN EJECT COUNT IN ALL 1/0
RECORD ON COMMANDS FOR CURRENT
QUTPUT TAPF OUTPUT BLOCK
INCREMENT C(PAGE) BY 1
INIT. WRITING OF CUR- l o ! |
R*OEN'I(') OOUTPUT BLOP(_;EK <
NTO OUTPUT TA <
——C CIPAGE): 3)
>
| 1 > PAGE J
RECORD ON
QUTPUT TAPE
INIT. WRITING OF INCOM-
RETURN PLETE QUTPUT BLOCK
PROGRAM ONTO OUT'PUT TAPE
DELAY UNTIL CHANNEL A
DISCONNECTS
PL]
STORE FULL WORD COUNT
BACK [NTO ALL i/0
COMMANDS FOR CURRENT
OUTPUT BLOCK

ENOOT

PRINT END-OF-QUTPUT-
TAPE COMMENT ON-LINH

l

ALLOW

STOP OPERATOR

(HPR 264,,) TO CHANGE
TAPES

SET NEW TAPE TO
LOW DENSITY, WRITE
CONTINUATION 1.D.
ON NEW OUTPUT TAPE,
WRITE EJECT RECORD
ON OUTPUT TAPE.

1 > PAGE

P68

REDO

WRITE REDUNDANCY
REMARK ON OUTPUT
TAPE AND ON-LINE

[INCREMENT c(PAGE) BY 1|

-S—C CIPAGE): 3 J
> ¥
|

l 1> PAGE

WRITE AN EJECT
RECORD ON
OUTPUT TAPE

PéB

REWRT
REWRITE PREVIOUS
OUTPUT BLOCK USING
ALTERNATE 1/0
COMMAND LIST

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Sheet 6 of 6)

3-10

3.2 PROGRAM TO PRINT MERCURY LOG TAPE IN OCTAL (MXPOCL)

MXPOCL reads the B6 tape produced from a Mercury run and prepares the
recorded information for off-line printing in octal. An option is provided to
permit: 1) printing the contents of the entire tape, 2) begin printing just before
the liftoff indication, or 3) printing only those entries time tagged within a
selected time interval.

The flow chart for MXPOCL is shown in Figure 3-2.

3.2.1 Input Requirements

Input to MXPOCL includes the B6 tape produced during a Mercury run.

3.2.2 Output Requirements
Output from MXPOCL is produced on A6, the tape used for off-line printing.

Output consists of ten 17-word blocks. The blocks are printed vertically,
and successive blocks are spaced across the page, left to right, in two rows per
log tape record. Marginal numbering of lines is provided to facilitate reading.
Each page of output represents two 170-word records from the log tape.

3.2.3 Method

The first record on the B6 tape is tested to ensure readability before proc-
essing begins; however, no attempt is made to interpret this information. Fol-
lowing the transfer of blocks from B6 to A6 and from A6 to the printer, redun-
dancy tests are made and EOF and EOT conditions are tested. Appropriate
comments are entered where necessary.

3.2.4 Usage

MXPOCL is available in squoze or absolute binary; however, neither the
squoze deck nor column binary deck produced from it may be read off line. To
run the binary version, the log tape must be placed on B6 and a blank tape on A6.
To run the squoze version, SOS must be on Al, blanks on A2, B1, and B2, in
addition to the tapes on B6 and A6.

a) Storage Required—2511 locations
b) Error Codes—Program stops occur each time an EOF, EOT, or per-

sistent redundancy is detected. On-line messages indicate the cause of
the stop and the action to be taken.

3-11

MC 63-4

c) Special Usage: The user has the option of operating this program in
one of three modes controlled by Sense Switch 2 and the console input
switches:

1) To print the entire log tape or any portion of it from the beginning,
SENSE Switch 2 must be up; the keys are not examined.

2) To print all information from the log tape, following the first block
time-tagged 10 seconds prior to liftoff indication, Sense Switch 2
must be down, and all keys must be up.

3) To print all information time-tagged within a certain time interval,
Sense Switch 2 must be down, and the desired starting time in
octal half-seconds must be entered into the keys, right justified.
When MXPOCL has positioned the tape, an HTR 61348 in 61338

occurs. The ending time, also in octal half-seconds, must be
entered into the keys, right justified. Press START to generate
an output for the desired time interval. When this is completed,

an HTR 57448 in 63008 occurs. A new starting time, which must

be greater than the last ending time, now may be entered into the
keys, and the process is repeated upon pressing START. If an
ending time is given which is not greater than its starting time,
MXPOCL prints the entire tape following the given starting time.
A summary of the various stops is as follows:

063568 HTR 63578 - Final Stop, B6 End-of-File

061418 HTR 61428 - Tape positioned. Enter ending time,
press start

063258 HTR 57448 - End of time interval. Set keys, press
start to do another.

057328 HTR 57028 - B6 is unreadable

05’7378 HTR 57028 - B6 is a BCD tape

062128 HTR 57028(

063458 HTR 622185_ End-of-tape on B6

060738 HTR 57748
Impassable redundancy on B6. Press

06171 HTR 61165~ iart to skip that record and go on.

064008 HTR 2,4

062038 HTR 57448 - B6 End-of-file while positioning tape

065.‘258 HTR 64778 - End-of-tape on A6. Put up new one,
press start

065358 HTR 64778 - Output (A6) redundancy. Press start
to rewrite

3-12

MC 63-4

Most stops are accompanied by on-line printouts.

The liftoff indication is the logged entry of Mercury on-line mes-
sage 21910 (3338), stating that liftoff has been received. MXPOCL

does not actually search the high speed input for the liftoff bit.
One may use MXPOCL to find the first occurrence of any message
by replacing D340 OCT 333000000 (at alter number 556) with a con-
stant containing the desired message number in the decrement.
Similarly, the value (10 seconds) by which the program backs up
after finding the message number may be varied by changing the
constant A120 OCT 2000 (alter number 552) to a value containing
the desired number of half-seconds, displaced 3 octal digits to the
left of the low order of word A120.

3-13

MC 63-4

POCL
READ IN CARD IMAGE
FOR ON-LINE
COMMENTS

1

I WRITE 1.D. ON A6 J

ETUP

SET B6 TO PROPER
DENSITY, TEST
READABILITY

ERROR STOP IF
B6 1S BCD OR
UNREADABLE

GOOD ‘

RESET EOF,

REDUNDANCY
TRIGGERS

{

(SW 2 : DOWN

=4 YES

~\ NO
J

@

KEYS 1

@CONSOLE KEYS) :DL———

YES

SERCH 1

ERROR STOP ON
EOF OR
IMPASSABLE
REDUNDANCY

SEARCH B6 FOR LOGGED
INDICATION THAT MES-
SAGE NO. 3338 =219y

HAS BEEN PRINTED

I WRITE HEADING I
ON A6

FIND 1

P1A

SEARCH B6 FOR
TIME TAG> VALUE
IN KEYS

0oBOY
REWIND Bé, OBTAIN
TIME TAG, Ty,

ERROR STOP ON
EOF, EOT OR
IMPASSABLE
REDUNDANCY

ASSOCIATED WITH
MESSAGE NO. 219

| g#AEfE BE FORWARD

TO RECORD TIME
TAGGED APPROX.
10 SEC. PRIOR TO Ty,

COUNT NO. RECORDS
SKIPPED

WR H G
ON A6

RESET
KESET CHAN. A AND B
EOF AND REDUNDANCY
TRIGGERS AND WAIT
TILL BOTH CHANNELS
DISCONNECT

QDY

CLEAR FIRST
INPUT BLOCK

FIGURE 3-2. MXPOCL PROGRAM FLOW CHART (Sheet 1 of 6)

3-14

LOOP1 r
READ A B6
RECORD INTO
FIRST INPUT BLOCK

—
LOOP2 1

ERROR TESTS ON
FORCE FIRST INPUT BLOCK
EXIT (SUBROUTINE ERT)

' NORMAL EXIT

CLEAR SECOND
INPUT BLOCK

1

READ A Bé6
RECORD INTO
SECOND |NPUT BLOCK

ERROR

CONVERT THE DATA
IN FIRST INPUT BLOCK
TO BCD-OCTAL, PREPAR
FOR QUTPUT
(SUBROUTINE CONIT)

WRITE CONVERTED
FIRST INPUT BLOCK
DATA ON Aé

(SUBROUTINE WRIT)

MC 63-4

LOOP3

i NORMAL EXIT

CLEAR FIRST
INPUT BLOCK

1

READ A B6
RECORD INTO
FIRST INPUT BLOCK

——

- |

CONVERT THE DATA
N SECOND INPUT BLOC
TO BCD-OCTAL, PREPAR

FOR OUTPUT
(SUBROUTINE CONIT)

WRITE CONVERTED
SECOND INPUT BLOCK
DATA ON A6
(SUBROUTINE WRIT)

FIGURE 3-22 MXPOCL PROGRAM FLOW CHART (Skeet 2 of 6)

ERROR TESTS ON
SECOND INPUT BLOCK RROR
(SUBROUTINE ERT)
3L00P

READ A B6
RECORD INTO
SECOND INPUT BLOCK

3-15

MC 63-4

ERROR
TEST
OB .+ MXPOCL
ROUTINE REW A6 AND B6 J ERT
SAVE IR4
j D&:g LéNTIL
NEL B
CLEAR FIRST DISCONNECTS

INPUT BUFFER

LOOP1
REDUNDANCY
INTO FIRST
INPUT BUFFER wg!TE|CgMAMNE6‘lT
o N-LIN
LOOP2 ON A6
HTR * + 1
ILE
WRITE COMMENT
CLEAR SECOND ON-LINE AND {
INPUT BUFFER ON AS

1 ¥

READ RECORD
INTO SECOND HTR * + 1
INPUT BUFFER

CONVERT

ERROR

FIRST INPUT
BUFFER EXIT ENOT
TRA 1,4 WRITE COMMENT
ON-LINE AND
DELAY UNTIL ON 6
CHANNEL A Y
DISCONNECTS
HTR * + 1
OUTPUT
FIRST BUFFER]
LOOP3 REWIND BS

CLEAR FIRST READ RECORD
INPUT BUFFER INTO SECOND
INPUT BUFFER

1

READ RECORD
INTO FIRST
INPUT BUFFER

CONVERT
SECOND INPUT
BUFFER

DELAY UNTIL
CHANNEL A

(OUTPUT 2ND BUFFER)

FIGURE 3-2, MXPOCL PROGRAM FLOW CHART (Sheet 3 of 6)

3-16

ENOT

SET EOT SWITCH

NONZERO

1

TURN OFF
TRIGGERS

EXIT TO

FORCE PRINTING |....

OF LAST BLOCK

[

NORMAL
EXIT

ER

#

MC 63-4

EOT SWITCH : 0
—/

CHANNEL B EOT
TRIGGER : ON

CHANNEL B EOF

TURN OFF EOT SWITCH, WRITE COM-
MENT ON A6 AND ON-LINE. DISPLAY,
IN IR1, TRANSFER ADDRESS FOR
RESTART. HALT

YES

TRIGGER : ON

NO

CHANNEL B
REDUNDANCY

NO

ZERO OUT
REDUNDANCY COUNT

ARE WE LOOKING
FOR A
CUT OFF TIME

YEs ¥

NO HAVE WE REACHED
1 THE DESIRED
TIME

YES *

RESTORE INDICATOR
AND HALT

FILE

WRITE COMMENT
ON A6 AND
ON-LINE. TURN OFF

REDUNDANCY
TRIGGER, IF ON

HALT
RED
IS THIS THE
FIFTH TRY
UNCLE
I%%%ﬁﬁ%ﬁmmc\f; WRITE COMMENT
COUNT ON OUTPUT
TAPE, A5 AND ON-
LINE. HALT
WRITE COMMENT
ON OUTPUT
TAPE, A6
i NO BACK-
SPACE SO GO
't onTO
BACKSPACE B6
Cl EXT RECORD
ERROR
RETURN

FIGURE 3-2, MXPOCL PROGRAM FLOW CHART (Sheet 4 of 6)

3-17

MC 63-4

3-18

ONIT

(COMPL) IR1
(COMPL) IR2
(COMPL) IR4

SAVE IR4
INITIALIZE

|

57810 - IR4

_——

o n

COUNT WITHIN 17-WORD BLOCK =
COUNT OF 17 WORD BLOCKS = j
COUNT OF OUTPUT WORD NUMBER

BLOCK *; END SIGNAL,;
OUTPUT BLOCK ADDRESS

k

BIGL) Bl

| 1799 > IR1

¥

NOT YET

EDL 1

510 IR2

'

LILL 4

CAL 141414141400¢ l

i

LDQ WITH i TH WORD
OF jTH BLOCK

i

LLS?2 J

i

AC <0

' YES

SSP, SUB 20004

oy pr— f—

DECREMENT K

I SLW IN kTH WORD J

i

RQL 1
CLEAR AC

SLW IN kTH WORD
DECREMENT K
CLEAR AC

i

LGL 3, ALS3, LGL 3, ALS3,
LGL 3, ALS3, LGL 3, ALS 3,
LGL 3, ALS3, LGL 3,

DECREMENT K
CLEAR AC

TIXON IR 2

l NOTYET]

y out

L DECREMENT K BY 2

TIX ON i

[OuUT

1

END SIGNAL = 0

NO'

SET END SIGNAL = 0

i

ALTER ADDRESS
IN BLOCK
MARKED *

ouT
TRA 2,4

FIGURE 3-2. MXPOCL PROGRAM FLOW CHART (Sheet 5 of 6)

MC 63-4

WRIT

STORE ADDRESS OF
EACH LINE OF OUTPUT
IN 1/0 COMMAND

1

DELAY UNTIL
CHANNEL A NOT
IN OPERATION

< END-OF-TAPE \ YES

TRIGGER ON j
* NO

YES /7 REDUNDANCY)

\ TRIGGER ON

NO
- A
WROT

INITIATE OUTPUT
TRANSMISSION

LUPE | BAK
DETERMINE LINE
LOAD CHANNEL COUNT AND BACKSPACE
WITH CSMMAND OVER THIS ENTIRE
FOR NEXT LINE BLOCK OF OUTPUT
REDO ENOOT B
AS EN OF TAPE
BACKSPACE Aé ENCOU??TERED on WRITE END OF FILE AND
OVER THIS ENTIRE REWIND AND UNLOAD A6
THE LAST LINE .
BLOCK OF OUTPUT DELAY UNTIL CHANNEL
' NO DISCONNECTS, TURN OFF
REDUNDANCY TRIGGER
REDO] N(FINISHED) !
PRINT ON-LINE WRITE ON-LINE
MESSAGE FOR YESY MESSAGE TELLING
REDUNDANCY, PRESS EDUNDANCY OPERATOR TO CHANGE
START TO*REWRITE ——7'5(TRIGGER ON TAPE;ON A6
HALT HALT

RETURN
TO 2,4

FIGURE 3-2. MXPOCL PROGRAM FLOW CHART (Sheet 6 of 6)

3-19

MC 63-4

3.3 PROGRAM TO PRINT REAL TIME CORE'D OUTPUT (MXILCO)

MXILCO interprets and formats for off-line printing the real-time core'd
output recorded on the B6 log tape by MTCOR and MSCORE. Panel information
may or may not be included.

The flow chart for MXILCO is shown in Figure 3-3.

3.3.1 Input Requirements

Input to MXILCO includes the B6 tape produced during a Mercury run which
contains information recorded (core'd) by RTCOR and MSCORE.

3.3.2 Output Requirements
Output from MXILCO is produced on A3, the tape used for off-line printing.

A heading will precede the first printout and identifies the MXILCO run.
Each core'd output is identified with: 1) the symbol given to RTCOR, 2) the
format code, and 3) the time tag. When panel information is included, it follows
the heading. After panel information, the core'd information is printed, left to
right, six words per line, with as many lines as needed.

3.3.3 Method

Each record of the B6 tape is tested for redundancy, EOF, and EOT. If an
abnormal condition is detected, appropriate comments are printed on line and
recorded on A3. When an EOT is detected before the EOF following the last
record, information from the final record will be processed and an EOT com-
ment will appear between core'd information in this record. When processing
is completed following an EOT condition, an INVALID DATA comment will ap-
pear, followed by a program stop.

3.3.4 Usage
MXILCO is a self-loading, relocatable routine listed on cards in row binary.
a) Storage Requirements—3408 locations, excluding BSS loader.
b) Error Codes—Program stops at each EOF, EOT, or persistent redun-
dancy. On-line messages indicate the cause of the stop and the action

to be taken. Input redundancies are reread three times before the
program stops.

3-21

MC 63-4

MXILCO
PRINT JOB HEADING
ON OUTPUT TAPE

—

i

PRINT APPROPRIATE
COMMENT OFF-
AND ON-LINE

!

' PAUSE

1

O —

(M, (3) (4

EXEC.MSILCO TO
BTAIN A CORE BL
(1) EOF RETURN

(2) EOT RETURN

3) REDUNDANCY RET
(4) BAD DATA RET.
5) NORMAL RET.

PRINT COMMENT OFF-
AND ON-LINE AND
CONTINUE ON TO

PROCESS LAST REC.

1

PRINT (OFF-LINE) BLK
HEADING: SYMBOL &
RANGE, FORMAT NO.

AND TIME TAG

PANEL
INFORMATION
INCLUDED

YES

PRINT PANEL (OFF-.
LINE): AC, MQ, SI,
KEYS, XR1, XR2, XR4

</ K = NO. OF
— DATA WORDS IN

THIS BLOCK : 0

LEGAL FORMAT

PRINT COMMENT
OFF-LINE

YES

SELECT FORMAT

(1) OCTAL

PRINT K WORDS
IN OCTAL FORMAT

1) |(2) DECIMAL FRACTION
(3) DECIMAL INTEGER
(4) DECR. & ADDR. AS

DECIMAL INTEGERS
(5) FLOATING

EXECUTE
MSFLOT TO

FIXED TO FLOAT.
| {9} FUGATING o FixEd FLOAT K FIXED
2] 3)) POINT EXECUTE
FRACTIONS MSPHIX TO
' ! g
EXECUTE EXECUTE EXECUTE TRINTK N
MSFRAC TO MSINTR TO MSPLIT TO flo AT’}B%'EORM
PRINT K WORDS PRINT K WORDS DSEE(F:’QQ‘ESTTESD
AS DECIMAL AS DECIMAL ADORESS OF
1 INTEGERS EACH WORD NO [/ ANY VALUES OUT
¥ OF RANGE

I
IN*

PRINT 2K WORDS

FORMAT

PRINT RELATIVE
SYMBOLIC LOCATION
AND FLOATING VALU

FOR EACH ONE
OUT OF RANGE

|

3-22

FIGURE 3-3. MXILCO PROGRAM FLOW CHART (Sheet 1 of 6)

SERAC

SINTR

SET UP CALLING
SEQUENCE FOR
FRACTION CONVERSION

SET UP CALLING
SEQUENCE FOR
INTEGER CONVERSION

1

[saveriano2 |

|

K = NO. OF WORDS TO
BE CONVERTED TO
IR1 ADDRESS OF
DATA - *“WORD"

| -
|

INITIALIZE ADDRESS OF

OUTPUT BLOCK IN
CALLING SEQUENCE.
CLEAR IR2 DELAY
UNTIL CHANNEL A

(0]

DISCONNECTION
[

RD | §

NEXT DATA WORD - ACJ

{

EXECUTE
CONVERSION
SUBROUTINE

(B2DFR OR
B2DIN)

1

INCREMENT ADDRESS
OF QUTPUT BLOCK
BY 3. INCREMENT

C(IR2) BY 1

|

(HAVE ALL WORDS \ NO

BEEN CONVERTED J

TR

ANS * YES

FIELD OF I/0

C(IR2) x 3 - COUNT

C

C(iR2) : 6 >—<

2

WRITE PARTIAL LINE
ON TAPE A3

WRITE OUTPUT BLOCK
ON A3 (18 WORDS -
ONE LINE OF PRINTING)

D

RESTORE 1T AND 2
ELAY UNTIL CHANNEL A
DISCONNECTS

TURN OFF AC
OVERFLOW, IF ON

FIGURE 3-3, MXILCO PROGRAM FLOW CHART (Sheet 2 of 6)

3-23

MC 63-4

2DFR

SAVE C(IR1), C(IR2),
C(AC). SET AC SIGN +,
SHIFT LEFT 1 AND
PLACE 1170 IN IR1

C C(AC) : 0) =
g #
THIS 1
I 0 - IR2 J
SUBTRACT BINARY _
EQUIVALENT OF 107"
FROM C(AC)
[i =12~ curwl
> N =
C(AQ) : 0
! — J i
INCREMENT ' VER
OBTAIN PROPER B
C(IR2) BY 1 ADD BINARY EQUI VALENT BJ.G.T EASES ONCD
i C(IR2) AND STORE
l 107 10 C(AQ) IN i TH WORD OF
: * “ADDUP’* BLOCK
OBTAIN PROPER BCD DIGIT ‘
BASED ON C(IR2) AND ZOUT '
STORE IN i TH WORD OF STORE ZERO IN ALL
“ADDUP’ BLOCK REMAINING UNUSED WORDS
OF “ADDUP”’ BLOCK
e
f 1§ CURY : 1)
T
e a1
) OBTAIN ADDRESS OF
3.WORD OUTPUT BLOCK
l FROM CALLIN SEQUENCE
AND STORE
' >
< ™\ =
ORIGINAL C(AC) : 0
Y \ J i
BCD BLANKS AND LOW

ORDER MINUS - FIRST
WORD OF OUTPUT BL.OCK

3-24

[

BCD BLANKS - FIRST
WORD OF OUTPUT BLOCK

il

~y

LOOP TO ASSEMBLE BCD
DECIMAL POINT AND BCD
DIGITS IN *‘ADDUP”
THROUGH **ADDUP + 10"
AND STORE IN SECOND AND
THIRD OUTPUT WORDS

[RresTore iRy, cir2) |

RETURN
TO
2,4

FIGURE 3.3. MXILCO PROGRAM FLOW CHART (Sheet 3 of 6)

201N

SAVE C(iR1), C(IR2), C(AC);
SET ACSIGN +; 11 - IR1

1

C C(AC: 0 }
L
i 0 - IR2 1
1 ‘
1

SUBTRACT BINARY EQUIV-

ALENT OF 10° FROM C(AC)
(WHERE i = C(IR1) -1)

]
——>< C(AC) : 0 j=___

[] ENDIT
INCREMENT ADD BINARY EQUIVALENT
. STORE ZERO IN ALL
ClIR2) BY 1 OF 10' TO C(AC) REMAINING UNUSED
| i WORDS OF “SUMIT" BLOCK
OBTAIN PROPER BCD DIGIT

BASED ON C(IR2) AND
STORE IN iTH WORD OF
"“SUMIT" BLOCK

£ } ALLOS
—'L C(IR1) : 1)

FILL SECOND
OUTPUT WORD WITH

[

THEM | ol

BCD BLANKS
DECREMENT OBTAIN ADDRESS OF 3-WORD
C(IR1) BY 1 OUTPUT BLOCK FROM CALLING

I SEQUENCE AND STORE. BCD

BLANKS - FIRST OUTPUT WORD]
ERSTN k)

BCD BLANKS - FIRST FOUR BCD BLANKS, FIVE BCD BLANKS,
OUTPUT WORD BCD MINUS, BCD 0 » BCD 0 - THIRD
i THIRD OUTPUT WORD OUTPUT WORD
LOOP TO ASSEMBLE BCD
DIGITS IN SUMIT THROUGH

SUMIT + 10 INTO SECOND AND
THIRD OUTPUT WORDS

J_—*(SIGN POSITION OF =
uP

ORIGINAL C(AC) : 0
SETUP B RIGINAL C(AC)
MINUS IN LOW

ORDER AC

PUT 60
(BCD BLANK) IN
LOW ORDER AC
Y

LOOP TO REPLACE LEADING
ZEROES WITH BLANKS AND

PREFIX SIGN CHARACTER

TO LEFT OF HIGHEST
ORDER NONZERO DIGIT
[1

GLT
I RESTORE C(IRY), C{IR2)

RETURN
TO
24

FIGURE 3-3. MXILCO PROGRAM FLOW CHART (Sheet 4 of 6)

3-25

MC 63-4

)

Y
EXPONENT = 0 ES
FRAP

MSPHIX NO

L

INTERCHANGE
. AC AND MQ
SAVEIR 1,2, 4 —\ YES
EXPONENT <0 }
l NO
A FRANO
STORE COUNT OF

OuTP

WRITE LINE ON A3

NO. OF WORDS IN
DATA BLOCK, -1IN
DECR. OF ENTES

!

INITIALIZE ROUTING

WITH ADDR OF DATA
BLOCK, ADDR AND

INDEX,OF OUT-OF -

HAVE K WORDS
BEEN DONE

STORE EXPONENT
IN ADDRESS OF
FOLLOWING SHIFT

Y5
(EXPONENT>35 }-

YES

STORE ADDRESS IN
FOLLOWING SHIFT

\ EXPONENT <-8

BCD. RESULT STOR-

INTEGER IN AC TO

ED IN CUBE THRU
CUBE + 2

GO TO TERM

3-26

HOOP ¥
th
DATA WORD
BRI CITEMP) » AC
(=12 .1 SET AC SIGN PLUS

SHIFT CHARACTERISTI
TO AC. SET AC
+ SUBTRACT 2004

RANGE BLOCK NO | | NO
A
0-1R1 SHIFT TO POSITION PUT BCD COMMENT
VALUE WITH WHOLE IN NEXT AVAILABLE INTERCHANGE
0-1R2 NO. IN AC; FRACTION POSITION OF AC AND MQ
IN MQ; C(MQ) + TEMP OUTPUT BLOCK
DELAY UNTIL l
CHAN A Y ¥
DISCONNECTS 8ZDIN SHIFT RIGHT
0-1R1 TO CONV. SIGNED TO POSITION

FRACTION IN AC

FRAP1 Y

PUT BLANKS WITH
APPROPRIATE BCD
SIGN IN CUBE + 2,
BLANKS IN
CUBE, CUBE + 1

Y
BZDFR
TO CONVERT

POSITIVE FRACTION
TOBCD. RESULT

TORED IN CUBE + 3,
THRU CUBE + §

2A

FIGURE 3.3. MXILCO PROGRAM FLOW CHART (Sheet 5 of 6)

Q
[*2]
Iy
[

e
<
P

() f |
LOGICAL RIGHT
LOCAT SHIFT BY NO. GENERATE NO.
OF PLACES = OF WORD OUTPUT
0- IR4, MQ C(IR4) ON FINAL LINE.
CUBE + 5 AC STORE IN COUNT
* OF 1/0 CONTROL
i STORE MQ IN 2ND WORD
RE M
YES /7 AC=0 WORD OF NEXT
‘ \ AVAILABLE POSITION
ZER 4 NO IN OUTPUT BLOCK WRITE LINE
ON A3
CUBE+4- AC LONG RIGHT ‘
SHIFT IéR, ;:(;R;EMENT CUBE +2 MQ
CUBE + 1- AC
LONG RIGHT SHIFT vEs ‘ l TERM ¥
6, INCREMENT
] UTIN '
IR4 BY 6 _< MR < AC > C RESTORE IR’S
* _ LOGICAL RIGHT
YES ‘ NO SHIFT BY NO. OF r
- CUBE + 5- MQ DELAY UNTIL
o CUBE + 4 AC CHAN A DIS-
STORE MQ IN FIRST CONNECTS. TURN
WORD OF NEXT OFF OVERFLOW
CUBE + 4 MQ, l IF ON
CUBE + 2 AC. AVAILABLE POSITION
LONG RIGHT SHIFT LOGICAL RIGHT IN OUTPUT BLOCK
BY NO. PLACES = SHIFT BY NO. OF
C(IR4). STORE MQ IN PLACES = C(IRd)
3RDWORD OF NEXT
AVAILABLE POSITION INCREMENT
OF OUTPUT BLOCK ‘ IRY, B2YE:\CH
i STORE MQ IN 3RD
WORD OF NEXT
COBE 37 M, AVAILABLE POSITION
SHIFT AS ABOVE, IN OUTPUT BLOCK
STORE MQ IN 2ND
WORD, NEXT AVAIL. ‘ C(R1)>5
POS. OF OUTPUT BLK
CUBE + 4> MQ
CUBE + 2+ AC
CUBE + 1> MQ
CUBE - AC HAVE K WORDS
BEEN DONE

FIGURE 3-3. MXILCO PROGRAM FLOW CHART (Skeet 6 of 6)

3-27

MC 63-4

3.4 SYMBOLIC TAPE UPDATING PROGRAM (COLSER)

COLSER is a multipurpose utility routine used to maintain and manipulate
symbolic decks in large-scale computing systems using SOS.

The COLSER flow chart is shown in Figure 3-4.

3.4.1 Input Requirements

a)

b)

c)

d)

3.4.1.1

B4 to B10 tapes (either symbolic tapes or BCD
listing tapes) to be modified.

B3 tape-—-modification packet containing:
Special control cards (optional)

Job card (standard SOS format and optional) These cards, if
Date card (standard SOS format and optional) present, must be
Comments cards, columns 8-13 blank (optional) in this order.

CPL or CPLRB (standard SOS format and
optional)

MACRO definition cards and associated
programmer macro skeletons

ALTER control cards and associated symbolic

inserts
These cards or

CHANGE control cards and symbolic inserts packets of
cards may be

GROUP control cards (see meaning below) in any sequence

ORDER control cards (see meaning below)
PULMAK control cards (see meaning below)
CARD control cards (see meaning below)
GO control card

PAUSE card must not be present.

NO cards may be read on-line.

Card Definition

MACRO—same meaning as with SOS. The redefinition of a programmer
macro with MACRO causes the old definition to be removed automatically.

3-29

MC 63-4

b)

c)

3-30

ALTER—COLSER interprets the ALTER instruction in one of two ways,
depending on whether the particular COL8ER update is in the normal
mode (key 1 up) or the complement mode (key 1 down). In the normal
mode, ALTER has the same meaning as it does with SOS. In the com-
plement mode, ALTER has a different definition. The cards between
the numbers in the variable field of an ALTER are recorded on tape
rather than deleted. For example, assume the following instructions
and ALTER numbers appear on a tape to be updated by COL8ER:

300 LXA CW, 2
301 CLA X,2

302 SUB Y

303 STO Z

304 TIX *-1,2,1

If a programmer gives ALTER 301, 303 followed by the instruction
PXD 0,2 the following output results if in the complement mode:

CLA X,2
SUB Y
STO Z
PXD 0,2

In the complement mode, only the instructions within the numbers in
the variable field of the ALTER are read out. Therefore, since the
instruction of ALTER number 300 is not in the field of the ALTER, it
is skipped.

In the normal mode everything is read out, except the alter cards
whose numbers appear in the variable field of the ALTER card.

Normally the complement mode is used only to obtain sections of a
symbolic tape. These sections can be used to create MOD(B3) tapes
for subsequent COLSER runs.

CHANGE—the CHANGE card is distinct from SOS. Relative numbers
in the variable field count all cards, not just machine instructions.
Thus, CHANGE A + 4 means "insert the following cards after the
fourth card following symbolic location A, not necessarily the fourth
location after location A." (Some of the intervening cards might gen-
erate no locations, such as remark cards, or might generate several
locations, such as MACRO cards.)

d)

MC 63-4

CHANGE may refer to cards prior to the one containing the first loca-
tion symbol in the program by regarding the first symbolic card in the
program as number zero and by using + N as one of the parameters in
the variable field of CHANGE (N means the Nth card in the symbolic
deck). For example, suppose that the first few instructions of a pro-
gram are:

AXT J,1
SXA

GO RTBA 1
RCHA cw
TCOA *
TEFA *+2
TRA GO

To take out the instructions from GO-1 to GO+3, use CHANGE + 1,
GO + 3. (Note: The variable field of a CHANGE is limited to starting
and ending addresses each containing at most one symbol plus one
decimal number. Example: CHANGE A; CHANGE A + 2,A + 4;
CHANGE A, + 10, CHANGE + 10.)

CHANGE, when operating in the complement mode, inserts rather
than deletes.

ORDER—the variable field contains two alter numbers; the symbolic
cards between these numbers (inclusive) will be inserted on the up-
dated symbolic tape at the point where ORDER is placed. ORDER is
normally used to physically move programs or sections of programs

on a symbolic tape. For example, suppose a tape contains five pro-
grams called A, B, C, D, and E. Each program has 200 alter numbers
and are presently in the order of A, B, C,D and E on the tape. To re-
arrange the programs so that the physical order on the update tape
(including one duplication) will be A, C, E, B, C, and D, the following
COLSER instructions are used:

ALTER 201,1000 (Take out programs which will
be reordered so that they are not
duplicated on the output tape—see
paragraph e below

ORDER 401,600 (Output program C after program
A)

ORDER 801,1000 (Output program E next)

3-31

MC 63-4

3-32

f)

g)

h)

i)

ORDER 201,400
ORDER 401,800 (Output programs C and D next)

Two important things to note in any COLSER run is that COL8ER
expects an ALTER or CHANGE to be the first instruction; if programs
are being reordered and are not altered out, they appear twice on the
output tape. In the above example, programs B, C, D and E (alters
201—1000) must be altered out since they are being reordered. ORDER
has exactly the same meaning whether in normal or complement mode.

Third Parameter (Optional)—a third parameter may be given if an
INPUT card is used. This third parameter specified which deck
ORDER or GROUP extracts the cards from. If this third parameter is
not given, the base deck is used. Example: ORDER 5,50,4 GROUP
A, B,4. Both cards refer to the fourth deck on the input tape(s). By
use of this third parameter, multiple jobs may be joined in one pass.

GROUP—the variable field of a GROUP card will look like that of a
CHANGE card, except for the optional third parameter explained above.
GROUP works exactly like ORDER, except that the variable field of a
GROUP contains symbols (or, as in CHANGE, plus numbers which are
relative to the first symbolic card in the programs) while ORDER con-
tains alter numbers. GROUP has exactly the same meaning whether in
normal or complement mode.

PULMAK—the variable field of a PULMAK card contains the name of
one programmer's macro which is not retained on the updated symbolic
tape. For example, "PULMAK POLY'" removes the programmer
macro POLY during a COLSER update. PULMAK is used to remove
programmer macros, not to redefine them. See the MACRO instruc-
tion in this section to redefine a programmer macro.

CARD—CARD control cards must appear in pairs. Any other control
cards occurring between them are put onto an output mod packet for
later use by SOS or COLSER. Only control cards occurring outside
pairs of CARD control cards are treated as commands to COLSER it-
self and affect the selection of items to be put on the symbolic output
tape.

The CARD instruction is most frequently used while running COL8ER
in the complement mode. The following instructions could be used for
a COLSER run (complement mode) to create a mod tape (B3) for a sub-
sequent COLSER run to update a symbolic tape:

ALTER 21,28
CARD

3.4.1.2

a)

ALTER
ALTER
CARD
CHANGE
CHANGE
AXT
CARD
ORDER
ORDER
ALTER
CARD

7,8
20,23

A+2,A+9
B,B+8
N, 2

300, 350
610, 640
17,18

The output on this run would be:

ALTER
ALTER

7,8
20, 23

Instructions brought in by ALTER 21, 28

Instructions brought in by CHANGE A+2,A+9
Instructions brought in by CHANGE B, B+8

AXT

ORDER
ORDER
ALTER

N, 2
300, 350
610, 640
17,18

Note that in the complement mode, if an ALTER or a CHANGE card is
followed immediately by a CARD, those cards up to the next CARD
precede cards brought in by the ALTER or CHANGE card.

Special Control Cards

INPUT—the address of the INPUT card refers to the number of jobs on
each input tape in the following manner. Assume the user has six in-
put decks: two on the first tape, one full deck and the start of another
on the second tape, the balance of the deck and another full deck on the
third tape, and one job on the fourth tape. The INPUT card address
becomes: 1, 2, 3, 4, 4, 5, 6, 6. The first two numbers state that the
tape on B4 begins with deck 1, and that deck 2 is the final deck. The

3-33

MC 63-4

3.4.

3-34

b)

c)

d)

f)

a)

b)
c)

d)

next two numbers indicate that the tape on B5 begins with deck 3 and
deck 4 is the final deck. The next two numbers indicate that the rest
of deck 4 is at the beginning of the tape on B6 and that deck 5 is the
final deck. The final two numbers indicate that deck 6 is on B7. The
INPUT card is used once for all successive jobs and is placed on the
first mod deck. A new INPUT card indicating the deck allocation on
the output tapes is punched when SOS is called.

BASE—the address of the BASE card specifies which input deck will be
updated. If the base is not specified, the deck after the last one up-~
dated becomes the base deck. Example: BASE 3 means deck 3 is up-
dated.

ONSWCH~—the address of the ONSWCH card specifies which switches
will be simulated as on. Example: ONSWCH 1,4 means that switches
1 and 4 are on; others off. ONSWCH 0 means that all switches are
simulated as off. More than one ONSWCH card may be given.

KEYS—the address of the KEYS card specifies which keys are simu-
lated as on. Example: KEYS 400000000000 means that the sign key is
on (-0 not acceptable). KEYS 122602 indicates that a date card is to
be formed with this information. KEYS 0 simulates all keys off. Only
one KEYS card may be given per mod deck.

CONT—causes the program to begin another COL8ER pass after the
present one is completed without halting between passes.

SOS—causes the program to load SOS after a COL8S8ER pass is completed
without halting after the COL8ER pass.

Output Requirements

A3 to A9 (as many as required)—updated symbolic tape regardless of
whether the input tape was symbolic or a BCD listing tape. The A3
tape may contain a SQZ pseudo-op followed by a squoze deck if these
were present on the input symbolic tape and were not deleted by the
mod packet. However, an input BCD listing tape may not contain a
SQZ, since what follows would be the symbolic equivalent of the squoze
deck, and it is the function of SOS to construct a squoze deck from the
symbolic.

C3 to C9 (as many as required) optional—a duplicate of A3.
Punched Cards—deck of temporary modifications (optional).

A 10—tape of temporary modifications (optional, but may not be
selected concurrently with punched card output).

MC 63-4

3.4.3 Method
COLSER can perform any of the following functions:
a) Update a symbolic tape for input to the SOS compiler.
b) Create a symbolic tape from the BCD listing tape (A2) of a squoze deck.

¢) Create a modification packet (on cards or tape) which may be used
either as input to COLSER for modification of another symbolic tape,
or together with an existing squoze deck as input to SOS for an execu-
tion run.

d) Combine multiple decks in one pass.

Updating modification decks and symbolic tapes may include reordering
and/or duplicating sections of existing programs as well as the conventional
changes possible with SOS (insertions and deletions).

A single run of COLSER yields an updated symbolic tape, containing rou-
tines from various programs if these routines are available on BCD tapes (or
cards).

COLSER can be modified to process a symbolic tape or a compilation listing
tape in many ways. For example, it can be modified to search either of these
tapes for desired symbolic information and produce output in a given format,
such as listing all references to 6-letter characters, all transfers to 6-letter
characters, all ORG cards, all transfers to subroutines with the 2-letter prefix
"MS", etc. It can also be modified to produce storage maps (in list form) and to
sum up storage requirements of various types of routines within a large system.
Some of these modifications are available under a spearate name such as
MXNDKT and CORMAP.

3.4.4 Usage
a) Operator Procedure:

1) Ready the on-line card reader with the absolute binary deck (with
self-contained loader) of COLS8ER. COLSER is in the form of an
SOS-produced absolute (as distinguished from relocatable) row-
binary deck with 23 instructions per card. Alternatively, mount the
C1 Utility Tape and ready the on-line card reader with the
COLSER call card.

2) Ready the input tapes (B3, B4, Etc.), the output units (A3, A4, etc.,

as needed), the optional tapes (C3, C4, etc., as needed), and the
A10 tape or card punch.

3-35

MC 63-4

3) Set sense switches and MQ-keys to specify options desired, as
listed under c5 below,

4) Press CLEAR and LOAD CARDS.
b) Halts and Error Codes:

1) Stop at 00003 means a serious error exists either in the machine,
peripheral equipment unit, in COLSER itself, or in the object pro-
gram. The program will not restart, dump core, save tapes, and
get off the machine.

2) Stop at 00004 is the normal halt. Press START to
a) Go to SOS if the MQ sign key is up.

b) Perform another COLSER run if the MQ sign key is down.

3) Stop at 00005 indicates a minor delay, such as a full tape reel.
Adjust, and press START.

c) Special Usage:

1) An advantage of the CARD CONTROL card: by using CARD care-
fully, a mod packet may be constructed as the output from COLSER
which will provide directions for joining multiple symbolics with a
few runs.

2) Complement Mode: in the complement mode, ALTER and CHANGE
incorporate rather than delete. All symbolic cards not within an
ALTER or CHANGE field are deleted. Thus, if the programmer
wants to extract a few routines from a large program, he will
probably want to use the complement mode. If he wishes to insert
the extracted routines into another program, he may follow the
ALTER or CHANGE with CARD, the ALTER or CHANGE for the
new program, and another CARD. Thus, the output from the first
pass will be a mod packet for a second pass.

The output from a complement run will appear in the order of the
symbolic cards of the original program. If rearrangement is nec-
essary, ORDER and GROUP can be used.

With key 9 down, the symbolic definitions of all macros on the in-
put tape are incorporated in the output from a complement mode
run.

Note: In the complement mode, all mods are treated as permanent.

3-36

3)

4)

=
@)
[=r}
(V5]
i
15N

Temporary and Permanent Modifications: the letter "T" or a
blank in column 72 of an ALTER or CHANGE card indicates that a
new ALTER card will be punched and followed with the same mod
packet. These mods will be used temporarily for SOS execution
runs. Permanent mods, indicated by a letter P in column 72 of an
ALTER or CHANGE card, will be included in the updated symbolic
tape.

FIELD Run: the address of the FIELD card specifies that all mods
with alter numbers lying in the range of the field will be automat-
ically inserted in each mod packet for the COLS8ER passes. The
FIELD card must be the first card on the mod deck placed on A10.
Key 18 is placed down to indicate a FIELD run. A JOB card must
appear in the deck for each job used. No file mark is placed be-
tween jobs. The FIELD pass puts a new mod deck on B3 which is
used for the successive COL8ER passes. The deck may have
MXMRGE cards in it if desired.

Example:
MXMRGE Type Deck Equivalent
FIELD 1,500 FIELD 1,500
INPUT 1,1,2,2 INPUT 1,1,2,2
CONT CONT
ONSWCH 1 ONSWCH 1
JOB ONE JOB ONE
LG ALTER 315, 317
MOD CLA SMTNG
ALTER 315, 317 SOs
CLA SMTNG ONSWCH 1
ENDMOD JOB TWO
GO ALTER 600
SOSs ADD OTHR
ONSWCH 1 ALTER 15
JOB TWO STL LSWR
LG
MOD
ALTER 600

3-37

MC 63-4

ADD OTHR
ALTER 15
STL LSWR
ENDMOD
GO

PAUSE

The deck produced on B3 by either deck is:

INPUT 1,1,2,2
CONT

ONSWCH 1

JOB ONE
ALTER 315, 317
CLA SMTNG
ALTER 15

STL LSWR
End of File

SOS

ONSWCH 1

JOB TWO
ALTER 315, 317
CLA SMTNG
ALTER 15

STL LSWR
ALTER 600
ADD OTHR

End of File

5) COLSER Sense Switch Options

1 up Output to A3, unless SS5 overrides
down Output to A3, unless SS5 overrides, and C3
2 up Normal

down SOS monitor control cards not read out

3-38

6)

3 up
down
4 up
down
5 up
down
6 up
down

MC 63-4

Normal

Duplicate of A3 printed on-line

Write EOF on output tapes and rewind

Leave output tapes positioned after last record
Output to A3

Output to card punch (SS5 should not be down if SS6
is up

Punch temporary mods
Temporary mods to A10

Key Options (Committed at the start of each COL8ER run)

sign up
down
1 up
down
2 up
down
3 up
down
4 up
down
5 up
down
6 up
down
7 up
down
8 up
down

After halt at 4, press START to go to SOS

After halt at 4, press START for another COLSER
run

Normal mode
Complement mode

Blank column 72 of ALTER or CHANGE indicates
temporary mod

Blank column 72 of ALTER or CHANGE indicates
permanent mod

Normal mode
All mods regarded as permanent
A3 output is in BCD

A3 output is in binary for off-line punch (not neces-
sary with 1401)

A10 output is in BCD

Output is in binary for off-line punch (not necessary
with 1401)

Normal mode

Duplicate B4; no B3 present
Normal mode

Temporary mods not read out
B3 and B4 rewound at end of run

B3 and B4 left at start of next file for stacked
COLSER runs

3-39

MC 63-4

3-40

7)

9 up Programmer macros not output in complement mode
down Programmer macros output in complement mode
10 up No rewind of output tapes before run
down Rewind output tapes before run
11 up Normal

down BCD records cut to 13 and no SQZ can be used for
off-line punch (not necessary with 1401)

12 up Normal
down CARD not recognized

13 up Normal

down PULMAK not recognized
14 up Normal

down GROUP not recognized
15 up Normal

down ORDER not recognized

16 up B4 not rewound before starting
down B4 rewound before starting

17 up B3 not rewound before starting
down B3 rewound before starting

18 up Normal

down FIELD card expected at beginning of mod deck
which is on A10

19-23 Month or day in octal
24-29 Day or month in octal
30-35 Year less 1960 in octal

Coding Information—though usually written to produce input to SOS
or COL8SER, where the input generally is the Project Mercury
Programming System or some phase of it, COL8ER is an independ-
ent utility program. Since it is fast-loading and makes optimum
use of 7094 I/0O speeds, COLSER itself occupies lower core mem-
ory and need not be cleared when its outputting is completed and an
SOS or COLSER run is to be made which will process that output.
Pressing START after the normal COLSER stop (at location 00004)
will cause either SOS or COLSER to be called in, as the sign MQ-
key on the IBM 7094 console was up or down, respectively.

MC 63-4

d) Checkout Status—by using a BCD listing tape of a squoze deck as the
B4 input to COL8ER, the symbolic tape used to compile that deck may
be reconstructed (on A3). However, several restrictions apply

1) Restrictions due to SOS:

(2)

(b)

(a)

(P)

Programmer macro skeletons do not appear on the SOS listing.
Therefore, they must be made available to COL8SER on a B3
mod packet tape so as to reappear on the reconstructed sym-
bolic tape.

A symbol which is never referenced appears in the dictionary
at the end of an SOS listing with an asterisk next to the page
number. A doubly-defined symbol is noted at the start of the
SOS listing. However, if there is a doubly-defined symbol
which is never referenced, it neither is listed in the dictionary
nor printed at the start of the listing. Instead, two dictionary
entries are created in the squoze deck. To ensure that the
original and reconstructed symbolic tapes are really identical,
the squoze decks should be compared to discover a situation
such as this. The comparison should be performed with a
program such as SUMARY. Also, the BCD listing tapes
should be compared (for instructions only, not commentary)
with a program such as COMPAR.

2) Restrictions within COLSER

One of the SOS listing pseudo-operations, SPACE, may have

a variable field N. Thus, "SPACE 3" would create three suc-
cessive blank lines on the listing, using only one alter number.
COLSER, however, will generate N SPACE 1's, each produc-
ing a blank line, but each taking an alter number. This will
cause the reconstructed symbolic tape, when compiled, to
generate an incorrect number of alter numbers. This can be
foreseen and prevented by adding to the B3 mod packet an
ALTER deleting the SPACE N from the listing tape and rein-
serting it.

SOS programmer macros can use parameters to generate
location symbols. However, if a parameter is used to gener-
ate a symbol for the first instruction generated by the macro,
this symbol appears on the listing tape every time the macro
is used, since the listing tape shows the first instruction gen-
erated by each macro. However, COLS8ER attempts to attach
this symbol to the location field of the MACRO card (since
this is also a legitimate possibility), and SOS will, therefore,
find one symbol being defined twice for one location. This is
flagged as an error, although correctly compiled.

3-41

MC 63-4

3-42

A further precaution: COLSER depends upon the format of the
SOS-produced BCD listing tape. If future changes to SOS

modify this format in any detail, COL8ER must be changed to
retain compatibility.

LOAD PUT COMMON MODS
CARDS ISIT A | IN EACH MOD
FIELD RUN PACKET AND PLACE
ON MOD TAPE
READ IN
COLSER
UERR
> IS THERE A ° SSW STATUS TO OUTPUT SSW
MOD CHECK PRINT FORMAT STATUS
YES
@ MESS7 MESS1 ’
UERR CLEAR
RESET URTB6
PROGRAM READ A RECGRD iy NDICATORS
SWITCHES FROM B6
ENTER AND
IDENTIFY
KEY OPTIONS
‘ FORCE
HAVE TEMP MODS NO CHECK
FOR TEMPS
JETNIK YES STL
TREAT 'BLANKS NO
AS TEMP ‘ CTINK
YES STAT2
UERR
NOTE
ON-LINE
JETNK1 ¢~ STAT3 STL
A3 OUTPUT UERR
IN BIN NOTE CALK1

ON-LINE

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Sheet 1 of 51)

3-43

MC 63-4

RAMP

A

GET RECORD FROM
MOD TAPE

=<
m
w

RAMP4

FILL TABLE SHOWING
WHAT JOBS EACH

IS IT INPUT CARD

m

z
o

<
m
w

Y

TAPE CONTAINS

RAMPS

CHANGE HTR TO TRA
TO INITIALIZATION

IS IT CONT CARD

z
o

AT ULE +1

RAMPY

CHANGE HTR TO
TRA TO CALL IN

IS IT SOS CARD

CN ()

z
(o]

<
m
[

SOS AT ULE + 1

RAMP6

FILL KEYS

IS IT KEYS CARD

/\

z
o

PANVAAUANY,

<
m
(73

> SIMULATE

BUFFER

RAMP7

FILL SWITCH

IS IT ONSWCH CARD

SIMULATE
BUFFER

RAMP8

POSITION TAPE

(eromen)
y NO
< IS IT BASE CARD }YES
NO

> TO REQUESTED

FILE

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Skeet 2 of 51)

A0 OUTPUT UERR
IN BIN NOTE STL CALK2
ON-LINE
NO J
JETNK3 ¥ STATS
NO UERR
OUTPUT
TEMP MODS MR STL CALK3
JEs]
JETNK4 Y STATé
o o zg?s STL CALK4
TEMP
EMP MODS ON-LINE

YES

JETNK5

REW B3, B4 AT
END OF RUN

3

YES

NO

CHANGE REWS TO
BSFS; STL CALKS

Il

JETNKé6

>3

A

EW OUTPUT
TAPES AT START

IS A3 AN
OUTPUT

1S C3 AN
OUTPUT

IS A0 AN
ouTPUT

Q
@

i

{.
]
i~

NO

JETNK7

MACRO OUTPUT
IN COMPLEMENT
MODE

YES

STL CALKé6

il

4

13-WORD
RECORDS ON
OUTPUT TAPES

il [l

NO

YES

13> C(OUTPUT
CONTROL WORD)
CRAVE

STAT7

UERR
NOTE
ON-LINE

N

FIGURE 3-4. COLBS8ER PROGRAM FLOW CHART (Sheet 3 of 51)

3-45

MC 63-4

JETNKS URTBé GETOP1 YES
10 TO LEFT
READ A RECOkD IDENTIFY B4 IS 1T JoB I?{DICATOR
FROM B4 RECORD
NO
GETOP2 . URTB? URTB7 YES
IDENTIFY FIRST READ ANOTHER READ A RECORD IS THERE B3 INPUT
B3 RECORD B3 RECORD FROM B3

NO

GET ONE AHEAD

\ NO

IS IT JOB

UFOMCD
FORM AND OUTPUT
JOB CARD

UTHRé
READ ANOTHER
B4 RECORD

JOB ALSO ON B4

A

UWR2
OUTPUT JOB CARD;
ET FRESH RECORD,

UERR
OUTPUT JCB
CARD ON-LINE

OUTPUT CARD; GET
FRESH RECORD

OUTPUT JOB
CARD ON-LINE

UWR1

UERR

GETOP1
IDENTIFY
B4 RECORD
uts
CERT
NO YES/ uromcD
MANUFACTURE PUT DATE 40 TO LEFT
ANY DATE YE DATE IN KEYS FORM DATE DATE IN CARF INDICATORS
CARD IMAGE

YES NO

@)

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 4 of 51)

3-46

UMOV1

40 TO LEFT
INDICATOR

MOVE DATE
TO BUFFER

ety o v
B4 RECORD
{ NO
UBEGR ¥

GETOP2
IDENTIFY
PREVIOUS

B4 RECORD

UBEGA

OUTPUT DATE,
IF ANY

UMOV2

MOVE DATE
TO BUFFER

IS THERE
AN OP
CODE

UTHRé

GET FRESH
B4 RECORD

UTHR7
READ
ANOTHER

B3 RECORD

UBEGS NO

UERR

PRINT ERROR
MESSAGE

4
J
D
)

UMOX

RESET LEFT
INDICATOR
200,000

*P = PULMAK
M = MACRO
C = CHANGE
A = ALTER

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 5 of 51)

3-47

MC 63-4

UCRE

CLEW

OUTPUT DATE,
IF ANY

CPL ON
B4
YES

UFOMCD
FORM AND

OUTPUT
CPL CARD

UPLUME
WR1
OUTPUT
CPL CARD
UPLUMP F‘
0 » XRY;
2000 TO LEFT
INDICATORS
Y
IN 17O RIGHT
COMPLEMENT NO
MODE INDICATORS
YES
Y
UERR
ON-LINE
MESSAGE
GETOP2
MODE Y IDENTIFY
ON B3 10 PREVIOUS
CARD
NO UNOW UCN
ISI7 ISIT o
9 CARD FIRST CARD P2G707A7C?
CARD CARD *
YES L YES YES
*P = PULMAK
SETS
G = GROUP INVERT INDICATOR GE;AD
O = ORDER INDICATOR SAYING A OR C GET
A = ALTER 20000 FOLLOWED BY ADDRESS
C = CHANGE CARD

3-48

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 6 of ',‘;1)

NO

1

uUlL

TEMPORARY

OUTPUT
TEMPS

RESET RIGHT
INDICATOR 6

NO NO YES
Y
IF PREVIOUS CARD
< ALTER OR CHANGE Y
INDICATE NO
MOD INSERTIONS
i
PREVENT
MOD TABLE
ENTRIES UNTIL
NEXT ALTER
OR CHANGE
y
csaz
ISIT PASS THROUGH UALUM RESET LEFT HAS
saz SQUOZE INDICATOR EOF
1000 OCCURRED

DECK

}NO

IS
CARD
ACTIVE

YES

Y

INDICATE NO
MOD TABLE
ENTRIES
(INSERTIONS)

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Shkeet 7 of 51)

3-49

m

MC 63-4

UWR2

QUTPUT
MACRO

YES

GETLC2

RESET
INDICATORS

SYMBOL

PUT ADDRESS NO
IN TABLE UeK \ LK
INSERT MACRO
YES 1517 IS TABLE NO NAME IN
CHANGE FULL TABLE
PUT NO
ADDRESS > YES
IN TABLE
UOROR)
YE ISIT
ORDER
PUT ALTER NO
NUMBER >
IN TABLE UALT Y
YES ISIT
ALTER
PUT ALTER NO
NUMBERS
IN TABLE
UMAK Y CSANA
UERR
FIRST TIME
PUT MESSAGE

THIS MESSAGE ON LINE

11T
PULMAK

INSERT NAME
IN TABLE

FIGURE 3.4, COLS8ER PROGRAM FLOW CHART (Sheet 8 of 51)

3-50

UovLpP

ALTER-CHANGE
TABLE YES
OVERLAP

*NO

GROUP-ORDER
TABLE YES
OVERLAP

NO

UBACK
URTBSB7
GET ANOTHER
B7 RECORD

R

PREVIOUS RECORD
ALTER OR

UCKNX

UERR
PRINT
ERROR
MESSAGE

UERR
PRINT
ERROR

MESSAGE

LE

CHANGE

N

' YES

SEPARATION
COUNT
TO TABLE

~

TEMPORARY >§0

i YES

SET INDICATOR
IN TABLE

STOP

FIGURE 3.4. COLBER PROGRAM FLOW CHART (Sheet 9 of 51) |

3-51

MC 63-4

L

NOB

YES

REW B3
P - SEPARATION
COUNT

NO

SAVE B3
CARD COUNT

B4 =
SOS LISTING
TAPE

UTHRé
SKIP

FORWARD TO

NSTRUCTIONS

CTE3A
ENTER B3
INSERTIONS
THIS CARD

15 UERR
CARD YES SEND
ACTIVE ERROR 16
MESSAGE
NO
7
UKIN
RESET ALL GETOP1
RIGHT IDENTIFY SET LEFT
INDICATORS PREVIOUS INDICATOR TO
EXCEPT 1 RECORD 100 000
UTH NO J
UWR1
OUTPUT THE \ NO s GEGTELTC' - -
MACRO, READ SYMBOL
THE NEXT IN TABLE LOCATION MACRO
RECORD SYMBOL.
YES
UGETRD NO
GETOP1 UTHR6 ” FORCE CT63A
IDENTIFY READ TO RETURN
RECORD ANOTHER TO COA
86 RECORD UBA i
ANY
ALTERS YES
GETOP1 READY TO 19
IDENTIEY PROCESS
RECORD NO
20
UWR1
OUTPUT THE CDA
MACRO, FOR
THE NEXT CHECK
R RD
DONE
UTHRS
READ
ANOTHER
YES

3-52

B6 RECORD

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Sheet 10 of 51)

TEMP MOD
READY

)
=
p|
O':»
|
NN

1000 TO LEFT
INDICATOR

UFOMCD
FORM

ALTER
CARD

GET FIRST
ALTER
NUMBER

DONE
UPDATING

COMUP
UPDATE ALTER
NUMBER

ALTER RESET LEFT
OR CHANGE INDICATOR
IN PROCESS 44000

ES 1

CHECK
COMPLETE

YES
8):)

GETLC1

GET
LOCATION

GETALL
CHECK
GROUP

TABLE

UDECI

CONVERT
TO BCD

GET SECOND
ALTER
NUMBER

UDECH

CONVERT
TO BCD

UPERA
PUT IN
CARD
IMAGE

SEP. CT. » XRt1
3 > XR2
0 - CTEPOT

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 11 of 51)

3-53

SECOND SYMBOL

UBF |

DONE CHECKING
CHANGE TABLE

DOES

MATCH

* YES

UK'S
CHECK
HEADING
CHARACTER

DOES
FIRST SYMBOL
MATCH

YES

SECOND SYMBOL

UKSTR
CHECK
HEADING
CHARACTER

WAS

MATCHED

YES

DROP
RELATIVE
COUNT

UBE

3-54

WAS
FIRST SYMBOL
IDENTIFIED

DID TEMP \NO
MOD REQUEST
DELETION

YES

WASIT A
CHANGE

IS SECOND \
ALTER NR NO

uu

IS IT READY
TO PROCESS

YES

PAST

ISIT

YES

READY TO
PROCESS

DROP
RELATIVE

COUNT

®

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Skeet 12 of 51)

MC 63-4

Uy

UERR
PRINT
ERROR

MESSAGE

w /

1000 TO LEFT

INCRE ASE
ALTER NR
BY 1

INDICATOR,
-2 5 XR2
CFAD
IS THERE A HAVE YES CTEMR -
SECOND THERE BEEN ‘ 0 > CTEMR
ADDRESS DELETIONS CTEPOT ()
{ NO
COWK
ALTER INCREASE UDECI
OR CHANGE ALTER NR CONVERT
ACTIVE BY 1 TO BCD
UDECI ALTER
CONVERT NO [OR CHANGE

TO BCD ACTIVE

:DEC; ADD 1 TO
CONVERT SECOND
CARD TO BCD ALTER

|

SEPARATION
1 - XR2 COUNT - XR1,
-2 » XR2

LOCATE MODS
ON B3

OUTPUT MOD
CARDS

ALTER OR
CHANGE

FIGURE 3.4. COLBER PROGRAM FLOW CHART (Skeet 13 of 51)

3-55

MC 63-4

ANY
ALTER OR

CHANGE STILL
ACTIVE

YES

RESET LEFT
INDICATOR
4000

READ FRESH
B4 RECORD

TEMP YES
MODS IN
P ROCESS

(o]

SET LEFT
INDICATOR
4000

|

WAS

PREVIOUS NO
CARD
END

YES

#0 > JANGL

RESET RIGHT
INDICATORS
EXCEPT 1

LE+ 1

STOP

PROCEED

ANOTHER
COLBER
RUN

WAS THERE
MORE THAN
ONE OUTPUT

YES

PUNCH NEW
INPUT
CARD

YES

CALL SOS

RESET
ERROR
RETURN

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 14 of 51)

3-56

MC 63-4

UBONG UBING

0 » XR2 -1 s XR2

IS THERE JOSH IS SECOND JOSH
CHECK FOR IS THERE
A SECOND FAILURE TO ALTER A SECOND HE Ok EO%
SYMBOL FOLLOW PAST SYMBOL FOLLOW WITH
WITH MODS MODS

IS SECOND
SYMBOL
IDENTIFIED

YES

N

UOK

IS THERE
ANOTHER
TEMP

NO YES
uson Y CTEM i
UGCCD
DID IS THERE
Y IN o
MODS PRINT A SECOND ES ‘ DICATOR
OVERL AP CARD FIELD TO CTEMR
YES c]

CANCAB UERR CANCAB
BRINT PRINT LiT:ILETREER YES INDICATOR PRINT
FIRST ERROR TO CTEMR FIRST
CARD MESSAGE MOD

. |

uUGCCD SEPARATION

FIRST DO SET LEFT
PTR,:rsT OVERLAP |ita cgum OF CARD MODS INDICATOR

AT THIS TIME VERLAPPED ’
MOD CARD SXRI OVERLAP YES 40000
NO NO I

UERR

PRINT DO NO SAVE MOD
ERROR MoDS | LOCATION IN

MESSAGE OVERLAP CANCAN

YES }
| UERR
SET LEFT PRINT SET LEFT
INDICATOR 33 24 ERROR INDICATOR
40000 MESSAGE 4000

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Skeet 15 of 51)

3-57

MC 63-4

DID NO SAVE MOD
MODS LOCATION
OVERLAP / IN CANCAN
YES
SET LEFT
INDICATOR
4000

IS NO

MODS
WITH ALTER i THERE A
OR CHANGE SECOND FIELD

IN UPDATE

COMPLEMENT] ACTIVITY

MODE COUNT

ULDK7

24

ADJUST B3 TO
GET MODS

CTEl
OUTPUT MODS BE-
TWEEN CARD CARDS

ADJUST SEPARATION
COUNT IN
TABLE

GETOP2
IDENTIFY NEW
B3 RECORD

X.ES.

SET INDICATOR
IN TABLE

FIGURE 3-4. COLB8ER PROGRAM FLOW CHART (Sheet 16 of 51)

3-58

URDUN
CHECK FOR
WRITE RE-

CRUNK
SPARE TO
NEXT JOB

IS B4 TO BE
REWOUND

REWIND B4

I

RESET LEFT
INDICATOR
2000

FOMCD
FORM AND
OUTPUT A

UHU
UBBB

CHANGE
ERROR CHECK
COMPLETE

IS FIRST
ADDRESS REWIND
UNDEFINED 87

IS SECOND
ADDRESS
UNDEFINED

TAPE(®) TO BE

CRUNK
SPACE 7O
NEXT JOB

OUTPUT
SOS CONTROL
CARDS

OUTPUT

REWOUND

WAS A3
AN
QUTPUT

MC 63-4

UFOMCD
FORM GO
CARD

UFOMCD
FORM A
PAUSE CARD

REW A3

NO

UGOOF ‘
PUT IN 1
PRINT IMAGE WRITE EOF AND
REWIND C3

WAS C3
AN OUTPUT

NO

WRITE EOF AND
REWIND C3

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 17 of 51)

YES

3-569

MC 63-4

UINIT Q
UAIL

UNOK

ALTER ERROR ALTER NUMBER UDECI UGOOF
CHECK COMPLETE TOO HIGH CONVERT TO BCD PUT IN PRINT
IMAGE

=
UBONS
UGOOF
IS PRINT No ADD 9 BLANKS TO
IMAGE BEEN
OUTPUTED PRINT IMAGE;
QUTPUT IF FULL
JULE YES

JSENS
SSW STATUS TO
PRINT FORMAT

UERR
OUTPUT
SSW STATUS

FILL IMAGE FOR

TOTAL ALTER
NUMBERS
JULY
UERR
WERE CARDS DECi PUT IN OUTPUT WHOLE
PUNCHED CONVERT TO BCD IMAGE
IMAGE
JUGL
UERR FORM CARD
OUTPUT COUNT IMAGE
SMALLER IMAGE
TURN OFF EOF UERR
&REDUN. LIGHTS OUTPUT
ON CHAN B \ IMAGE

WERE
CARDS
PUNCHED

UERR
OUTPUT LONG
FINISHED MESSAGE

UERR
OUT PUT SHORT
FINISHED MESSAGE

FIGURE 3.4. COLS8ER PROGRAM FLOW CHART (Sheet 18 of 51)

3-60

FEED TWO
BLANK CARDS
THROUGH PUNCH

MC 63-4

SINGLE ADDR.
(NO SECOND
FIELD)

PRESERVE XR4

YES
1S MOD 15 XR2
TEMPORARY *
YES
ARE THERE CACT~1- CACT
INSERTIONS (ACTIVITY COUNT)
CANT
INITIALIZE
UERR RETURN
TO ULE
COBALT
RESTORE XR4, UERR
INDICATE
SINGLE ADDRESS PR';';:S%’EOR
L ; TOT, TEXCEPT) °
TOCOAIF |
| cTe3A ENTERED | UBOND
L_FroMcTEs |
RESET LEFT
INDICATOR
1000

VARIABLE
EXIT AS XR2 WAS
—1 ~2 ~3

o

CFAD §

0- CTEMR

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Sheet 19 of 51)

3-61

MC 63-4

SAVE XRS,
COMPL. OF

ADDR. OF INPUT
BUFFER - XR2

BLOCK + 17 : HPAGE

STL HAH,
(SKIP SEARCH
FOR PAGE ! ON

FUTURE ENTRIES)

YES

PAGE ON THIS LINE

NO

YES
*INCOL. 1

NO

o
2“7 LOCATION FIELD

PRESENT

ALTER NR.
PRESENT

XR2 - HOME,
STL HDIC,
(AM IN MACRO
LBR OR HEAD)

Sheet 48

ALTER NR.
PRESENT

YES

CONTD
CONVERTIT
TO BINARY

HCONVL
ALTER NR~1
- UALTN,
WORD 6> MQ
HBEG
YES
REMARK CARD o
NO
< SYMBOL PRESENT
YES ALLO
SYMBOL - BLANKS -
coL.1-6 COoL.1-6
—T
HOP
4 XR4, 6 » XR1
NO
OP = DEC OP CODE PRESENT
YES YES
HSDEC HGOS
OP->COL. 7 - 12, OP -» WORD 2
12 XR4 OF OUTPUT

6 - CHAR OP

NO

HNOOP

BLANKS »
WORD 2 OF
OUTPUT

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 20 of 51)

3-62

MC 63-4

DELOP HINEO HMOOP HROB HALOP
ADJUST VARIABLE 12 > XR2 LAST CHAR. : BT COMPLETE
FIELD TO START MOVE INPUT 6- XR],
OF OP CODE 1 OP CODE INTO
IN COL. 18, MOVE IMAGE TO oL 13 4> XR4 s FORMAT
TO OUTPUT BUFFER OUTPUT IMAGE :
1
HHJET
, MOVE VARIABLE NO
FIELD INTO
1S OP VF
SOS FORMAT D
INTO OUTPUT BUF. VES
HLBR
CONVERT TO
o Cfgséti;;ﬂmg' 1S OP LBR
FIELD HPEN
HRBLK ¥
YES
BLANKS - IS IT HEAD STL - HDIC
WORDS 18, 19, 20
OF OUTPUT IMAGE NO
CROUN D
WAIT FOR GET WORD 6
PREVIOUS INPUT OF INPUT
TO COMPLETE
HBIT
Y
MOVE 1ST INPUT |YES
WORD TO SYMBOL PRESENT BLANKS -
HLOCT
OUTPUT BUFFER
HMAC
Loi':;(':EDLD NO /" MORE THAN A
z LOCN. SYMBOL
YES HOME
HMACRO
RESTORE XR2,
WORD 1 - HLOCT HLOCT - COL.
MACRO NAME 1~ 6 OF OUTPUT
+COL.7 12
— MOVE INPUT
) BUFFER TO 0+ HDIC
OUTPUT BUFFER
C(SYMCD) » FOR THIS LBR
HLOCT

RESTORE XRS

PROGRAM 3-4. COLSER PROGRAM FLOW CHART (Sheet 21 of 51)

3-63

MC 63-4

CANCAB

ALTER OR
CHANGE WITHIN
OVERLAP

YES

HAS FIRST ONE
BEEN PRINTED

V

YES,

UECCD
GET RECORD

UERR
PRINT IT
ONLINE

N N

NOTE THAT FIRST
ONE IN OVERLAP
HAS BEEN PRINTED

RETURN

IS TAPE AT
PROPER POSITION
ALREADY

IS DESIRED
RECORD AHEAD
OF PRESENT

POSITION

NO

YES

CBOXB

CROUN
CORRECT FOR CHAN.

B REDUNDANCY,
IF_ANY

FASTER TO
REWIND THAN
BACKSPACE
RECORDS

csoxc y 'ES

FASTER TO
REWIND THAN
BACKSPACE FILE

ULOK
PAGE 45

CBOXA

ACT,A - UFBUF + 2,

MQg _ 17> UFBUF +3

PICK UP EXIT

CALLING SEQ.

ADDRESS FROM

COMPUTE NO.
OF RECORDS TO
BACKSPACE

YES

REWIND TAPE

CUKY
POSITION TAPE
AT START OF

CURRENT FILE

®

FIGURE 3.4. COLBER PROGRAM FLOW CHART (Sheet 22 of 51)

3-64

‘ IS CARD BCD \' i

YES

WORD 14
- AC
> TEST

WORD 28
- AC
- TEST

DATE READ
OR FORMED

UERR
PRINT IT
ONLINE

0 - XR2

Y
QS NEXT CARD BCD ES

| NO

- 16 » XR2

RETURN

!

CNDOM
PRINT IT
OFFLINE

RETURN

MC 63-4

CLOBR

CLOBRF

GET PAGE
NUMBER

DECI
CONVERT
TO BCD

PUT PAGE
NUMBER IN
PRINT IMAGE

Y

UERR
PRINT CARD

AND PAGE NO.

CLOBRA

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Sheet 23 of 51)

3-65

MC 63-4

CLOBRB

IS OFFENDING YES
CARD ON B3 /
NO
)
CLOBR CLOBR
OUTPUT REC RD OUTPUT RECORD
FROM B4 FROM B7

CLOBRC
RETURN

SAVE INDICATORS

< ANY ALTER NR NO

YES

UPDATE
ALTER NUMBER
BY ONE

SAVE XR1

DOES ALTER NR
MATCH NEXT ORDER,
TABLE ENTRY

YES

NO

-®

CONVERT BCD
TO BINARY

‘_

SET INDICATORS

|

NO /' COMPARED WITH
ALL TABLE ENTRIE

YES
[

RESTORE
XR1 AND
INDICATORS

FIGURE 3.4. COLS8ER PROGRAM FLOW CHART (Sheet 24 of 51)

3-66

IS 1T SQUOZE

NO

4 UWRI1
WRITE CARD, GET
NEXT CARD

csQz
MOVE SQUOZE
CARDS

IS IT SQUOZE

NO

MC 63-4

YES

CsQz
PASS OVER
SQUOZE CARDS

GETOP1
GET OPERATION
CODE

IS THIS PRIOR
TO ALTERNR. 1

‘ CORK

YES

IS 1T SOS CONTROL

SIL 2000

CORB

IS IT END CARD

CLOBR
PRINT CARD

UERR
PRINT ERROR
MESSAGE

CORN

iS IT MACRO

CORKY YES

IS IT END

YES

RIR 6000

|

SHEET 29

comuP
UPDATE
ALTER NR

GETLCI
GET LOCATION
SYMBOL

GETALL
CHECK GROUP
TABLE

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Skeet 25 of 51)

3-67

MC 63-4

CRAB
CRABC
UPDATE CONVERT ONE WORD
COUNT OF FROM ROW TO
PUNCHED CARDS COLUMN BINARY
CRABB
ISTHIS A 51T A IS IT ROW YES WAS IT THE NO
FORMER CARD SQUOZE CARD BINARY FIRST WORD
NO YES
CPIN
EXECUTE
CRAB
RESET AND
NPUNCH PUT IN COLUMN LO:EEHANNEL
PUNCHIT BINARY IMAGE
CVIM CRIB | ;
HAVE ALL WORDS \ MO
BEEN CONVERTED
RETURN PUNCH IT

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 26 of 51)

3-68

URDUB

Y
EOF o~
NO

NO

.
YES
‘ REDUNDANCY '
URDUE
U

UMIFA

ON B4 YES

WHILE HANDLING
RDER OR GROUP,

NO

STL 200000

RDUH
SET UP TAPE
CONTROL

URDUZ

BACKSPACE
AND REREAD
TAPE

NO
REDUNDANCY

YES

BACKUP
3 TIMES AND
TRY AGAIN

NO

CLOBRB
WRITE CARD

YES
SUCCESSFUL

UERR
PRINT ERROR
MESSAGE

MC 63-4

®

SAVE XR4,
1 XR2

uo

CVDOM
OUTPUT
UFBUF

0 - XR1,
RESTORE XR4

UERR
PRINT ERROR
MESSAGE

STL 20000

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Sheet 27 of 51)

3-69

MC 63-4

FIRST TIME

3-70

FIGURE 3-4.

HAS BLANK
CARD BEEN
D

OBTAIN

YES
CS0ZC
IS NEXT NO ASB{TI‘?K NO
CARD BCD CARD
YES YES
RESET IND STL CPLICE

POSITION
TAPES TO THROUGH
START OF SAVE ALL XRS
NEXT FILE
GETAD
GET
1S CARD ADDRESS
ALREADY IN o
COLUMN BIN
HPUNCH # 1 NO
PUT BCD ROW BIN
INTO CARD
IMAGE YES
20 » LEFT
CONVERT CARD ON A
IMAGE (RB)
TO COL BIN,
SET IND
T0 BIN
csQzB
CRASH
RETURN
RESTORE
XRS

COLSER PROGRAM FLOW CHART (Sheet 28 of 51)

INITIALIZE

IN YES
COMPLEMENT
MODE

NO

SET LEFT
INDICATOR
4000

GETLC1

SYMBOL

GETALL
CHECK
GROUP

TABLE

YES

GET LOCATION

RESET LEFT
INDICATOR
200000, SET

IGHT

R
INDICATOR 2

GETOP2

IDENTIFY
RECORD

CTE1A

RESTORE
LOCATIONS

MC 63-4

1S CARD
ACTIVE

READ NEXT
RECORD

IS IT ALTER
OR CHANGE

NO

I1S1T GO OR
PULMAK

NO

IS 1T GROUP
OR ORDER

NO

I1ISI1T SQZ

FILE

ADJUST RESET B4
TAPE TO FORMER
CONTROLS POSITION

CTEIC RESET LEFT
1SIT INDICATOR
wRO 20000
YES

< 1

SET
NO
1S1T END RIGHT
INDICATOR

YES 20000

RESET RIGHT
INDICATOR
6000

UNRZ

OUTPUT
CARD

CTEABC

ULOK6

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Sheet 29 of 51)

3-71

MC 63-4

GET
ADDRESS

INITIALIZE

1S 1T ORDER

IS THERE A
FIRST SYMBOL

NO

IS THERE A 2ND
ALTER NR

YES

PRINT ERROR
MESSAGE

CTEIK

IS TABLE

NO/" |s THIS ONE
CHECK DONE IDENTIFIED

YES

FILF

1S THIS ADJUST
ONE IT TAPE
POSITION

READ ANOTHER
B4 CARD

FILF ULOR6
ADJUST ADJUST
TAPE B4 TO GET
POSITION RECORD
CTEN {&
HAS THE CARD \YES
BEEN REACHED / CTEIM
No Is THE ALTER YNQ.{ ARE we DONE
NR. TOO HIGH
YES

OUTPUT

uoor ¥ FINAL CARD
/ _upbopL \ / UERR \
PRINT PRINT ERROR E
CARD MESSAGE

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Sheet 30 of 51)

3-72

CTEIT

REWIND B4
INITIALIZE

URTB6 DOES
READ A FILE NUMBER
RECORD MATCH

YES

URTB6
GET ONE RE-
CORD AHEAD

\NO

®

HAVE ALL symBoL) YE
BEEN CHECKED

CTEIN
CTEIP

DOES SYMBOL
MATCH

DOES HEAD
CHAR. MATCH

YES

DOES SYMBOL
MATCH

PUT CORRECT
ALTER NR. IN CORDS
UALTN, GET READ A
SEP. COUNT CARD FROM

B4
CTEIU CTEIR ¥
GET ISITAG6 -
SEPARATION CHAR. SYMBOL
COUNT
DOES HEADING

MC 63-4

FiLF
ADJUST
TAPE
CONTROLS

GETLGé6
GET LOCATION
SYMBOL

CHAR. MATCH

AS CORRECT
RECORD BEEN

WAS COUNT
TOO LOW

REACHED

PUT IN
HEAD
CHARACTER

CORD
OUTPUT
RECORD

CORDS
READ RECORD
FROM B4

WRITE OUT
ARD, GET LOC,
S

FIGURE 3 . 4. COLSER PROGRAM FLOW CHART (Sheet 31 of Si)

3-73

MC 63-4

URDUN
WAIT UNTIL PREVIOUS
OUTPUT IS COMPLETE

Y
C $0S CONTROL CARDL—
YES NO
EOF
MACRO OR IN A YES]

{ NO MACRO SKELETON

NO
BACKSPACE \

TAPE 1 NO
RECORD ALTER NR WITH

CARD (RT INO 5)

BACKSPACE CHAN. B
TAPE 1 RECORD,
THEN 1 FILE.
SKIP TAPE FORWARD 1
RECORD AND DELAY

YES

‘ UPDATE

TURN OFF ALTER NR
CHAN. B COUNT BY 1

REDUN. IND.

CVIP

(INOVERLAPPING) _YES
J

MOD AREA

NO

C UNCORRECTED YES PUT * * * + % *

READ REOUN IN CARD IMAGE

i T

CVAM
OUTPUT
CARD

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Skeet 32 of 51)

3-74

MC 63-4

CVIM

N (A) RETURN

OUTPUT SOS CONT.
(SSW #2 UP)

IS THIS A ‘
CONTROL CARD

YES

CVOM y NO

INITIALIZE 1/0
COMMAND FOR
BCD OR BIN

INITIALIZE 1/0
WRITE COMMAND
FOR BCD

IS CARD A
TEMP MOD

CTEMT

REQ PUNCH TEMPS
(SSW #6)

UPDATE COUNT

NO
‘ g’;’TTg% OF OUTPUTTED
CARDS

CPUN
PUNCH CARD
(CB OR RB
AS REQ)

OUTPUT
ONTOC3

REQDUP TOC
(SSW #1)

CHAN C AVAIL

UPDATE COUNT ' }
OF OUTPUTTED
CARDS

CRUSH

REQ PUNCH SHOULD CARD
W oS CHANA AvAlL - o BIAR:
oo o3 BE BINARY TO BINARY

YES NO

|

SHOULD IT

BE PRINTED OUTPUT

ONTO A3

UERR
PRINT IT

IS 1T BCD

O~—

FIGURE 3-4. COL8S8ER PROGRAM FLOW CHART (Sheet 330f51)

3-175

MC 63-4

HGETEM

YES
ISITA+

GETAD +

CLEAR BUFFER

STORE IT

¢ + ¢
HUNT
% % % % GET NEXT

HWORE
GET NEXT
COLUMN

[
YES
IS IT BLANK ‘
HOUSE ; NO

NO
!

1S IT BEYOND IS IT ALTER
coL. 16 OR ORDER

’YES

IS IT HEAD NO

< b
ES
ISIT SQZ
HOPTOD
NO CHECK AND
CONVERT

ADDRESS

CLOBRB I
PRINT CARD HTEST + 2 cggg;(rno
PAGE 40 STORE IT CONVERT
ADDRESS

UERR
PRINT ERROR
MESSAGE

STORE IT

RIR 36

|

FIGURE 3.4. COLBER PROGRAM FLOW CHART (Sheet 34 of 51)

3-76

HDWDY

LEFT
ADJUST

STORE IT

STORE IT

HOWDY
LEFT
ADJUST

HTESTM
TEST FOR
LEGAL ADDRESS

CONTO
CONVERT
TO BINARY

STORE IT

STORE IT

HUNT
GET NEXT
FIELD

HTESTM
CHECK FOR
LEGAL ADDRESS

CONTO
CONVERT
TO BINARY

HUNT
GET NEXT
FIELD

HIMY
NOTE THAT
3RD ADDRESS
NOT EXAMINED

MC 63-4

YES

PUT 3RD
ADDRESS IN
TABLES

HOPTOD

CHECK AND
CONVERT ADDRESS

STORE IT

STORE IT

CLOBRB
PRINT
RECORD

UERR
PRINT ERROR
MESSAGE

HOWDY

LEFT
ADJUST

STOREIT

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 35 of 51)

3-77

MC 63-4

HOWDY
LEFT
ADJUST

STORE IT

HAMY HPLS
Y E
HOWDY IS ADDRESS 0 >
LEFT
ADJUST
JUS NO
HOWDY
LEFT
STOREIT ADJUST
|
)
HIMY STORE IT
NOTE THAT
3RD ADDRESS ‘
HUNT
GET NEXT
FIELD

NEXT
CHAR.

564

\

HUNT
GET NEXT
FIELD

HEMY

HIMY
NOTE THAT
3RD ADDRESS

~

NOT EXAMINED

HEINI

HTESTM
CHECK FOR
VALID NUMBE

R

~—

CONTD
CONVERT
TO BINARY

\/

STORE IT

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 36 of 51-)

3-78

AC -» CARMEN,
SAVE ALL XRS,
UGRUPC » XR1

k]

AC : NEXT

UTABL ENTRY

UFEB

MC 63-4

INITIALIZE
XR2 FOR
B4 RECORD

INITIALIZE
XR2 FOR
B3 RECORD

]

IS THERE A
XR! + 2 XR1 SYMBOL

UKSN
RESTORE XRS GET HEAD

CHARACTER

C
x
>
-

UPDATE NEXT
UTABL ENTRY

UFEB -1

GETSY I

MOVE OUT
BLANK

GRTSC

CARMEN -» AC

UDROP
GET A
CHARACTER

IS IT A BLANK

YES

NO

NO

LEFT ADJUST
SYMBOL

wrt Y

RETURN

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Sheet 37 of 51)

3-79

MC 63-4

HWORKS
GET COLUMN
1

ISIT
ASTE

HNDAS

HWORK
GET
COLUMN 7

NO

IS IT SOS
CONTROL CARD,

COLUMN 8

o)wo

IS IT BLANK

NO

YES

HHH %

HRET
COLS. 8 - 12 YES
BLANK
NO
CLOBRB
SIR 100000 PRINT
CARD
UERR
PRINT ERROR
MESSAGE
RED L_L_
RETURN

ISIT IN TABLE

PUT CODE IN

INDICATOR

YES

HH2

HWORK
GET NEXT
CHARACTER

IS IT BLANK

6 — CHARS.

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Skeet 38 of 51)

3-80

MC 63-4

1 INITIALIZE INITIALIZE
} XR2 FOR XR2 FOR
! B4 RECORD B3 RECORD

IS1T ENDTAP 1S IT A GO CARD
RIG YES YES
UPDATE
| ‘ TAPE CONTROLS SIL 200
CJINX
| COMPLEMENT IS BLANK IN COL

ISIT HEAD MODE 1S CARD ACTIVE 72 = TEMP

GETAD

GET P IN COL 72

ADDRESS
NO
MODIFIED SIL 1000

HEAD CHAR.
> UHEAD
i
! SIL 1000 £ T IN COL 72
URT
URT NO
RETURN
RETURN

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 39 of 51)

3-81

MC 63-4

HOPTOD
INITIALIZE HTEST
0~ XR2 FOR 6 CHARACTERS HWORKS ~+» XR2 CHECK ADDRESS
(-6~ XR2) FOR LEGALITY

IDENTIFY
FIELD — SEPARATING

, CHQ_RACTER

CLOBRB
PRINT
CARD

UERR
PRINT ERROR
MESSAGE

CLOBRB
PRINT
CARD

UERR
NOT;3RD ADDRESS
NOT EXAMINED

CONTD
CONVERT ADDRESS
TO BINARY

FIGURE 3-4. COLS8ER PROGRAM FLOW CHART (Sheet 40 of 51)

3-82

LEFT - JUSTIFY
THE SYMBOL

SELECT
THE PUNCH

AND - STOP

IS IT A NUMBER

MC 63-4

RESET HWORKS
TO PASS THROUGH
ADDRESS AGAIN

UERR
PRINT ERROR
MESSAGE

NO

SELECT
THE PRINTER
H8DG
GET CALLING
SEQUENCE
PARAMETERS
HHF
FILL UP TO
12 WORDS OF
IMAGE
HHE
HHB
GIVE 1/0 COM'D
MORE THAN 12 WRITE PRINTER,
WORDS SHIFT LINE RT
HOV
GIVE 1/0
COMMAND
IS THIS A PRINT ~ EJECT PAGE

PAGE 8

{ [ISITALTER

YES

SIR 2 FOR
CHANGE

IS IT ORDER

SIR 20 FOR
GROUP

GETAO
+3

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Sheet 41 of 51)

3-83

[P

MC 63-4

IS IT A NUMBER
YES

-

‘NEXT WORD » MQ

SAVE XRS,

RIR 3% INITIALIZE FOR

NEXT CHAR.
|

CLOBRB READY FOR NEW\ YES

PRINT WORD

CARD o

UERR NEXT CHAR~ AC,

PRINT SAVE REST,
MESSAGE RESTORE XR$

‘_

DO ANY MODS
FOLLOW

NO

UGSCD
PRINT
CARD

UERR
PRINT ERROR
MESSAGE

JOSRA

RETURN

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Sheet 42 of 51)

3-84

SAVE XRd,
14> XR1

1O,

A
JSENSA + 1 CM;gf: T
INITIALIZE LOCATION
AC i
-15XR2
JSENSC |
YES
NEXT SSW UP MESSY - AC MESSY + 1 AC
b |
<
XR1:2
JSENSA
STORE AC JSENSB >
JSENSD RESTORE XR4 XR1=1- XR1
UPDATE TO

TEXT NEXT SSW

®
-®

MC 63-4

HER

XR4+ 1~ XR4,
SAVE ALL XRS,
COMPT — 1> COMPT
TURN OFF CHAN B
REDUN IND

CONVERT
BINARY
TO BCD

-
@~

HEOX

-

SAVE XR4,
INITIALIZE
CALL SEQ
TOCL (BR

CLOBR
PRINT RECORD
AND POSIT

i}

RESTORE XR4

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 43 of 51)

3-85

MC 63-4

UDRIP

|

PUT A
CHARACTER
IMAGE

UFIB

UDRIP ENTERED
FROM UMJT

1S IMAGE
ALMOST FULL

UFIG YES

YES

ANY CHARACTERS

LEFT

U

NO

UDROP

CLEAR AC,

SHIFT 1 BCD

CHARACTER
FROM MQ TO AC

FORM A CARD

FILL BALANCE
OF IMAGE
WITH BLANKS

ADD 3 BLANKS

JPUF

!

UERR
PRINTIT

.

|

SAVE XRS

UGDFR
PAGE 44

-

SHOULD IT BE OUTPUT

CREW
OUTPRUT IT

HREL |

RETURN

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 44 of 51)

3-86

MC 63-4

UGOOF
USWCH
NO UERR PUT HEAD PUT HEAD
i INITIALIZE TO HAS ERROR MSG PRINT ERROR CHARACTER CHARACTER
GET ALTER OR BEEN MESSAGE IN MQ IN MQ
CHANGE CARD YES
v i
SET RETURN UPUFL Y .
FROM ULOKT FIRST ERROR IN N\ 5an] INITIALIZE
SO CAN ENTER THE MESSAGE
AT ULOKA
|
UPUF Y
DOES HEAD
ULDKA UDROP CHAR MATCH
ULDK7 GET HEADING —
POSITION B3 CHARACTER
UDRIP BLOCK FURTHER
CLOBR ANY HEADING
PUT CARD CHARACTER T';JIGI:; GET $ SIGN CHECKING
. NUMBER IN
PRINT IMAGE NO
USCCDH UKSY
\
RETURN

UPPIF
I's 1T ALL zERO)L,
NO
YES
NO
uMIT

UDRIP
PUT A CHARACTER
IN IMAGE

UDROP
GET A
CHARACTER

)

IS IT ZERO

YES

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Skeet 45 of 51)

3~-87

MC 63-4

LOCATION
TO AC
CBOX
VARIABLE B yr
EXIT
|

CRDUN
CHECK FOR
INPUT
REDUNDANCY

UBET
DROP COUNT,
SIMULATE
TSX URTB 6,

6+ 1

NEXT TO LAST CARD

NO

LOCATION
TOAC
ULOKA
cBOX
VARIABLE BACK WP
EXIT
ULOKE —

URDUN
CHECK FOR
OUTPUT
REDUNDANCY

INPUT
REDUNDANCY

(NO
NEXT TO LAST CARD

YES YES
ULOKD ULOKE
URTB6 URTB?
GET LAST GET LAST
CARD CARD
ULOK

FIGURE 3 -4. COLS8ER PROGRAM FLOW CHART (Sheet 46 of 51)

3-88

URTC » XR2

©

URTC1 - XR2

UWAIT
DELAY UNTIL
CHANNELS FREE

|

SELECT
PROPER INPUT
BUFFER

Y

MOVE 14 WORD
BUFFER TO
UFBUF

¢

MC 63-4

UPUSH
INSERT COMMA
IN IMAGE

INITIALIZE

L

UPERY {

SET FOR
MAXIMUM OF
6 PASSES

UPERS F

UDROP
GE T ONE
CHARACTER

1

1

UPUSH
PUTIT
IN IMAGE
NO

(DONE

YES

UPE RD

FIGURE 3-4. COLBER PROGRAM FLOW CHART (Skeet 47 of 51)

3-89

MC 63-4

MOVE ONE
ICHARACTER INTO
ADDRESS OF SAVE XR4
CARD IMAGE
INITIALIZE
XR2 WITH

NEXT BUFFER

URDUN
CHECK FOR
REDUNDANCY

ON O

CHKR
SET SWITCH
FOR BCD OR

BINARY

SOS LiSTING

READ TAPE, ADJ
BUFFER CONTROL
CLEAR BIN. IND,

m—

SOS LISTING &

BEYOND conmon_\
CARDS J

NO

ANVIL
CONVERT TO
SYMBOLIC CARD

ACTIVE
BUFFER
- XR4 CROUN
CHECK FOR
REDUNDANCY
ON INPUT
(xm: NEXT BUFF.>-—=
HAS END CARD
BEEN READ
N COMPARED WITH URTC NO
ALL BUFFERS
YES BUFFER ADDRES:
CONTROL - XR4
UROUK
\
RESTORE XR4,
XR2 - CREAD,
XR2- CRAVE

URT

FIRST TIME \YES RETURN
THROUGH

URTD

SECOND TIME
THROUGH

SiL 1

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Sheet 48 of 51)

3-90

A AND C
CHANNELS
ARE FREE

DELAY UNTIL

NO END OF TAPE

YES

CHAN A REDUN

MUTE ENDTAP

CONTROLS

CARD & UPDATE

NO

URDUZ

URDUD

**STORE
CHANNEL"

UROUH
IDENT. OUTPUT
BUFFER (1 OF 7)

OUTPUTTING
ON A ALSO

YES

NOTE "*C3
FAILURE, NOW
WRITING

A3 ALONE"’

URDUC

‘*STORE
CHANNEL"’

BUFF. (10F 7)

URDUM

DISCONNECT
TAPE

ETIND (L. 16 =

A, L.15=C) “NO

MORE OUTPUTS
THIS CHAN''

THER CHANNE

YES

OTHER CHAN) YES
DISCONNECTED

NO

INOTE **A3 FAILURE

NOW WRITING
C3 ALONE”

UPDATE NO. OF
TIMES THROUGH

UROUC °
URDU!
YES PRINT MSG
> 29 TIMES “WRITE
FAILURES”
NO
BACKSPACE
1 RECORD ERROR
STOP
WRITE AGAIN
AND DELAY

REDUNDANCY

BACKSPACE 1
RECORD, WRITE
| BLANK RECORD,

UPDATE COUNT

> 24 TIMES

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Sheet 49 of 51)

3-91

MC 63-4

URTB7
UTHR7?

URDUN

YES/ sos CONTROL
CHECK FOR

SAVE XR4 AND BUFFER ADDR.

H
REDUNDANCY ¢ s‘f‘r"ﬂﬁ'g A CONTROL - XR2
ON OUTPUT NO
\
NO /' COMPLEMENT
IS DESIRED
BUFFER ACTIVE }_YES MODE CVODM
ON CHAN A OUTPUT
YES
NO
IS INCLUSION
EXAMINE ACTIVE
CRDUN
CHAN C NO
CHECK FOR STATUS
REDUN. ON INPUT)
ARE MACROS TO \ NO
| BE OUTPUTTED
HAS EOF)\ YES NO(g 0 Ve YES
BEEN READ ON CHAN C _\ ‘o
NO YES IS IT MACRO -
UWAITS
BUFFER ADDR. RO
CONTROL ~ XR4 DELAY UNTIL COMPLEMENT IS DELETION
CHANNEL MODE ACTIVE
FREE - -
CHKR
SET SWITCH
FOR BCD OR HATE CHOKE
BINARY

RESTORE XR4
| BUFFER ADDR.
READ TAPE, ADJ. CONTROL - XR2
BUFF. CONTROL,
CLEAR BINARY

IND, UPDATE

SEP. COUNT
CVDOM
\ OUTPUT

URT |
1
RETURN
CRé

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Skeet 50 of 51)

3-92

HAS
SIMULATED BUFF.
BEEN ENTERED

YES

UPDATE
RERUN BY
TWO

IS SWITCH NO R%Z%QT:Y
SIMULATED ON
M o ONE
YES
HAS YES LOAD
SIMULATED BUFF. MQ FROM
BEEN ENTERED BUFFER
NO
ENTER KEYS

ARE WE IN THE YES

MC 63-4

REQUESTED

[NO

DOES
REQUESTED
FILE EXIST

TSX CLOBR, 4

PRINT ERROR
ROUP OR ORDE!

FIiLFB g ES
SET TAPE TSX UERR, 4
CONTROL FOR PRINT ERROR
REQUIRED TAPE MESSAGE
FILFY
IS TAPE YES
ERROR
POSITIONED TO RETURN

CORRECT FILE

RTDBI

POSITION TO
START OF FILE &
RESET COUNTERS

FILFA

RE TURN

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Skeet 51 of 51)

3-93

MC 63-4

3.5 CORE MAPPING PROGRAM (CORMAP)

CORMAP records on A2 selected lines from an SOS listing. These lines
contain ORG, TC, END, HEAD, JOB, USE, REFR or 6-character location
fields. The last preceding line with a location field is given for ORG, TCD, or
END. The following line is given with USE, REFR, or LBR.

3.5.1 Input Requirements

The BCD listing tape of the program to be examined must be placed on B6

(if it is on two reels, the second goes on BT7).

3.5.2 OQutput Requirements

The information goes out on A2

3.5.3 Method

The tape is searched for the desired items. They are put on A2 with the
decimal equivalent of the locations included. A list of section lengths beginning
with 6-letter symbols is given at the end.
3.5.4 Usage

a) Ready input BCD listing tape on B6 (and B7 if there are two tapes).

b) Put SOS on Al.

c) Place blank tapes on A2, B1, and B2.

d) Place CORMAP on A3 or in card reader (sense switch 1 down if in card
reader).

e) Clear and load SOS.

f) CORMAP halts at 5671. For additional runs, press START.

3-95

MC 63-4

3.6 PRIORITY INDICATOR LISTING PROGRAM (MXNDKT)

MXNDKT prepares a listing of the use of "in process,' "ready," and sup-
pression indicators for the Mercury compilations. It can also list all references
to 6-letter symbols.

3.6.1 Input Requirements

The symbolic tape of the program to be examined must be placed on B6.

3.6.2 Output Requirements

The indicator listing is read out on A2, and the operational 6-letter refer-
ences are read out on A6,
3.6.3 Method

Every use of TRNON, TRNOF, QUEUE, and UNQUE, or their expansion
along with the alter number, is placed on A2. At the end, a cross reference is
made of these uses. If sense switch 6 is down, each reference to a 6-letter
symbol, along with its alter number, is placed on A6.
3.6.4 Usage

a) Ready input symbolic tape on B6.

b) Place SOS on Al.

c) Ready blanks on A2, Bl, B2, and A6 (if sense switch 6 is down).

d) Place MXNDKT on A3 or in the card reader (sense switch 1 down).

e) Clear and load SOS (sense switch 6 down if 6-letter references desired).

f) Program halts at 5670. To make extra passes, use additional GO
cards and press START.

3-97

MC 63-4

3.7 CHECKSUM CORRECTION PROGRAM (SQZSUM)

SQZSUM is a 5-card program which reproduces column-binary squoze
cards with the checksum corrected.

3.7.1 Input Requirements

Column binary squoze cards suspected of having erroneous checksums
serve as input to the SQZSUM program.

3.7.2 Output Requirements

This program punches on-line new squoze cards, identical to the input
cards except for corrected checksums.

3.7.3 Method

The input squoze cards contain 12-bit ""folded checksums'" in column 3
which represent the logical sum of the bits in all data words on the card except
the checksum itself. SQZSUM computes the checksum (which cannot equal zero)
of each input card, even if the card itself is in error rather than its checksum,
and reproduces the input card exactly, except that the checksum computed by
SQZSUM replaces the previous checksum.

3.7.4 Usage
a) Operator Procedure:

1) Load and ready the on-line card reader with the SQZSUM deck fol-
lowed immediately by the suspect column-binary squoze cards to
be reproduced.

2) Load and ready the on-line card punch,

3) Press LOAD CARDS.

4) Not necessary to clear memory. No sense switches or console
keys are tested or used. No tapes are required. The status of

all tapes is unchanged.

b) Stops—1038 is the correct stop (HTR 1) upon completion. Additional

cards may be introduced at this time. There are no other stops.

3-99

MC 63-4

c)

d)

3-100

If a card in other than column binary squoze format is introduced, it
is repunched without change, except for column 3.

SQZSUM is a 5-card self-loading absolute row-binary deck, which
loads into lower memory (using locations 0-175 8). It was assembled
using SE9AP.

MC 63-4

3.8 TAPE-KEY COMPARISON PROGRAM (KEYS)

KEYS examines a program listing tape and prints out each instruction
having a direct address equal to the location entered in the console (MQ-entry)
keys. Optionally, KEYS prints out each instruction having a direct address
equal to any of up to 23 locations punched in a data card.

3.8.1 Input Requirements

The BCD listing tape of the program to be examined must be placed on B4
and must contain an end-of-file mark after the listing. If the EOF is missing,
KEYS will examine the entire tape.

The location to be searched for is entered into the console keys in octal-
equivalent BCD, e.g., location 00374 is entered as 000 000 030 704. If a data
card is used, it should be placed immediately following the KEYS deck in the
on-line card reader with the locations to be searched for punched, right-justified
in octal-equivalent BCD, in successive words starting with the 9L word.

3.8.2 Output Requirements

Each instruction in the B4 listing with a direct address equal to the loca-
tion entered in the keys or a location punched in the data card is written on the
output tape, A2, in BCD. If the address field of a constant or of an immediately
addressable instruction (such as AXT) is equal to a location being searched for,
these constants and instructions are also written on the output tape.

No attempt is made to compensate for references tothe desiredlocation(s)
via indexing or indirect addressing.

The JOB and END cards are also printed for purposes of associating the
printout with the particular listing tape.

Persistently redundant records are printed out with the word REDNCY in-
serted at the right.

3.8.3 Method

KEYS reads in one record at a time from B4 and compares the address
field with the location specified either by the setting of the entry keys or punched
in the data card. If they compare, the record is written on A2 and a counter is
updated. KEYS continues to read individual records and compare their address
fields until an end-of-file is reached; whereupon KEYS prints out the count of its
findings, rewinds the input tape, and halts. At this time, a new data card or

3-101

MC 63-4

key setting may be entered, sense switch 1 reset, and START pressed to initi-
ate another pass. After a pass using a data card, the keys may not be used to
enter data for future passes.

An examination of location 00000 may be made with a zero entry in the keys.

If a data card is used and location zero is one of the locations being searched
for, the 9L word of the data card must be zero.

3.8.4 Usage
a) Ready input BCD listing tape on B4.

b) Ready blank tape for output on A2.

c) Enter location in console keys in octal-equivalent BCD. Optionally de-
press SSW 1 and place the data card behind the KEYS deck.

d) Ready the on-line card reader with the KEYS deck (and loader), fol-
lowed by the data card(s) if more than one location is to be searched
for on one pass.

e) Press LOAD CARDS.

f) KEYS is a 9-card absolute row-binary deck assembled by SOS. It re-
quires a 2-card loader.

g) Final stop, at 56738, is an HPR. If finished, write an end-of-file on

A2, press CLEAR, and print A2 under "single space.' To initiate
another pass, (1) reset SSW 1, (2) enter new control card or reset
keys, and (3) press START.

3-102

MC 63-4

3.9 LOW CORE REFERENCE PROGRAM (LOWCOR)

LOWCOR examines a program listing and records each instruction with a
direct address less than 0040,

The flow chart for the LOWCOR program is shown in Figure 3-5.

3.9.1 Input Requirements

The program to be examined should be listed (using LS, PS or CPL) on
tape which becomes input to LOWCOR on B4. An end-of-file must be written on
the listing or LOWCOR does not terminate until encountering an end-of-tape
mark on B4. The program reads in and tests one record at a time.

3.9.2 Output Requirements

The selected records from the examined program are written on tape B5
for off-line printing. The program writes an end-of-file on B5 and rewinds B5
prior to returning to SOS Monitor. Constants, immediately addressed instruc-
tions (such as AXT and ALS), instructions with effective addresses which re-
sult from using the XEC instruction, indirectly addressed instructions, and the
various pseudo-instructions (such as ORG, BSS, EQU, END) are written on B5
if their direct addresses are less than 0040, The JOB card and the page numbers
from the input tape are reproduced on the output tape.

3.9.3 Method

The method of operation for LOWCOR is illustrated in Figure 3-5.

3.9.4 Usage

a) Time Required—LOWCOR requires, in addition to the time needed for
rewinding tapes B4 and B5 at the beginning and end of the program, ap-
proximately 5N milliseconds, where N is the number of records in the
program listing being examined.

b) Storage Required—80 core storage locations (116108 - 117278).

c) Checkout—LOWCOR was used to check all sections of the SOS system
and was hand-checked by comparing it with the listings of sections DA
and M1.

3-103

MC 63-4

3-104

REWIND
LISTING AND
OUTPUT
TAPES

1

PRINT NAME
OF PROGRAM
(LOWCORE)
ON QUTPUT
TAPE

-

CLEAR INPUT
STORAGE
AREA

i

ENTER
NEXT RECORD
FROM LISTING

TAPE

I

IS RECORD
A "JoB"

YES

CARD

IS RECORD

Y|
A PAGE ES

NUMBER

IS THE

ADDRESS NO
{4TH WORD)
BLANK

YES

NO

IS ADDRESS
LESS THAN

YES

01005

IS ADDRESS

NO

GREATER THAN
0037,

IS TAG
(3RD WORD)

DISCARD RECORD

| N

BLANK

PRINT RECORD

|

WRITE EOF
AND REWIND
OUTPUT TAPE

FIGURE 3-5. LOWCOR PROGRAM FLOW CHART

MC 63-4

3.10 SQUOZE DECK COMPARISON PROGRAM (COMPAR)

COMPAR compares corresponding records from two program listings and
records the locations of those which are not identical. One record at a time is
read in from each listing tape and compared.

3.10.1 Input Requirements

The programs to be compared are listed (using LS, PS, or CPL) on tapes
which then become the input tapes B3 and C2 for the main program. An end-of-
file must follow both listings or COMPAR does not terminate until encountering
an end-of-tape mark on B3 or C2.

3.10.2 Output Requirements

The locations of corresponding instructions which are not identical are
read out on tape A2 for off-line printing.

3.10.3 Method

COMPAR reads in one record each from B3 and C2. If the instruction por-
tions of the two records are not identical, the location of the record is written
on the out tape. When an end-of-file is read from either input tape, both input
tapes are rewound and the program stops. Commentary, pseudo-instructions,
BCI variable fields, and other nonexecutable information, which may have been
spaced or punctuated differently in the two program versions without affecting
their execution, are ignored.

3.10.4 Usage

a) Time Required—the time required for COMPAR (IBM 709) is 6 + 3N
+ D + S milliseconds, where N is the number of records in the shorter
of the two programs being compared; D is the number of times the er-
ror routine, upon encountering unlike corresponding records, has to
be employed; and S is the number of times the search routine has to be
employed to realign the tapes.

b) Storage Required—468 cells.

c) Operator Procedures:

1) COMPAR is a squoze deck executed under SOS control. Therefore,
tapes Al (SOS), A2, B1, and B2 (blanks)arerequired. The

3-105

MC 63-4

d)

3-106

COMPAR deck should be readied in the on-line card reader and
sense switch 1 depressed.

2) During execution, upon an HPR after an on-line message, the tape
numbers of B3 and C2 should be entered in the keys and sense
switches. The right three digits of B3 should be entered in BCD
in the decrement of the keys and of C2 in the address. The fourth
(high order) digit is entered in the sense switches. For example,
B3 = H1579, C2 = H81 would be entered as:

keys: 050711001001. sense switches: 001000.
3) Operate as a normal SOS job.
Restriction—information not available on a listing tape, such as pro-

grammer macro expansions, LBR cards, or expansion of other gen-
erative pseudo-instructions, cannot be compared for correctness.

MC 63-4

3.11 SYMBOLIC CORE DUMP PROGRAM (MXCORE)

MXCORE is a self-loading program which causes a symbolic rescue dump
of core after an SOS program has destroyed the SOS Monitor. MXCORE dumps
core memory, exclusive of SOS Monitor, onto B2 in the SOS format and re-
stores SOS while producing the output tape for printing on A2,

The flow chart for MXCORE is shown in Figure 3-6.

3.11.1 Input Requirements

MXCORE, as a salvage measure following a program mishap, requires
that the SOS tape setup be untouched—no tapes may be moved. The RESET
button should not be used and the CLEAR button must not be used. Sense
switch 4 must be down to indicate a rescue operation to SOS. The computer
must be inhibited or disabled while MXCORE is being loaded.
3.11.2 Output Requirements

MXCORE dumps the panel and all of core storage above the decimal loca-
tion 3000 (the 3000 lower core locations are reserved for SOS control programs)
onto B2 (see B2 format under subsection3.11.4). SOS receives control and pro-
duces an output tape on A2 for printing.

3.11.3 Method

The method of operation for MXCORE is illustrated in Figure 3-6.

3.11.4 TUsage
a) Operator Procedures:
1) Set sense switch 4 down
2) Ready card reader
3) Load MXCORE program

4) Final program stop is at 1788 (the standard SOS stop), with A2

containing the program dump for off-line printing.

b) Format of B2 for SOS Rescue Dump—the execution of a CORE or
PANEL macro causes the specified information to be written on B2 as

3-107

MC 63-4

3~108

one or more physical records.
also written on B2 to serve as flags.

has the following format:

Certain additional 1-word records are
The B2 for an SOS output dump

Second

Third

Fourth

Fifth

Last Record

Nine words

Three words

Less than
256 words

Three words

One word

Location of Length of Description of
Record on B2 Record Record
First One word Flag signaling beginning of '"snaps"

PANEL macro output: AC, MQ, SI,
XR1, XR2, XR4, ENK-keys, sense in-
dicators, sense switches, AC overflow,
divide check, and I/O check

CORE macro flag

Consecutive core storage locations,
255 or less

Record defines six or more consecutive
identical storage words

(The fourth record is repeated as many times as necessary to com-
plete the limits of the CORE macro.
when six or more core storage locations have identical contents.)

The fifth record is repeated

Flag signaling end of ""snaps"

SET SS4
DOWN.
INHIBIT OR
DISABLE
COMPUTER

1

WRITE
CORE FLAG
ON B2

SAVE AC
AND XR1

DISABLE THE
COMPUTER"
FROM ANY
TRAPPING

DUMP CORE
MEMORY ON
B2 AS 242
WORD RECORDS.
SIX OR MORE
CONSECUTIVE
WORDS RESULT
IN COMMENTARY
RECORD

\

COMMUNICATIONS

DEACTIVATE
DATA

CHANNEL

TURN OFF
CHANNEL A&B
REDUNDANCY

AND
END-OF-FILE
INDICATORS

WHEN ALL
OF CORE
THROUGH
LOC (32,767)
DUMPED ON
B2, WRITE
END OF CORE
FLAG

[

Y

WRITE
BEGINNING OF
DUMP FLAG
AND P ANEL
ON B2

INITIATE
LOAD TAPE
SEQUENCE TO
LOAD SOS Al
TO WRITE
FINAL OUTPUT
TAPE A2

)

INITIALIZATION

STARTS DUMP
AT LOC (3000)

l

FIGURE 3-6. MXCORE PROGRAM FLOW CHART

MC 63-4

3-109

MC 63-4

3.12 SQUOZE TAPE MODIFICATION LIMITS PROGRAM (SUMARY)

SUMARY analyzes the squoze tape (or preface card of a squoze deck) of any
SOS-assembled program and estimates the allowable number of modifications
to that program for an SOS execution run. Also, if a squoze tape is used for
input, SUMARY shows the '""separation count''—the maximum such count for a
successful recompilation is 32767.

The flow chart for SUMARY is shown in Figure 3-T7.

3.12.1 Input Requirements

The fixed constant, currently 17004, for the particular SOS revision must
follow the SUMARY program deck. The constant (in binary) must be in the ad-
dress field of the 9-row left word on the data card. The remainder of the card
is optional.

Either a row-binary preface card from the squoze deck of the program must
be readied in the card reader after the data card, or the squoze tape of the pro-
gram to be analyzed must be mounted on A5.

Several preface cards, squoze tapes, files on one squoze tape, or any
combination thereof may be processed in succession by following the instruc-
tions printed on-line.

3.12.2 OQutput Requirements

SUMARY computes the number of core locations available for mod process-
ing (called the mod packet count limit) and then, using a rule of thumb de-
scribed under Method below, estimates the maximum number of cards the mod
deck may contain. Additionally, if the input was a squoze tape, SUMARY shows
the separation count.

All output from SUMARY is on-line. Thus, in the time it takes the operator
to rewind and remove the tapes used for the compilation that created the squoze
tape or deck (the symbolic listing, library, SOS, and intermediate tapes),
SUMARY can be executed, requiring only the squoze tape or one squoze card.

3.12.3 Method
a) Rule of Thumb—approximate maximum number of allowable mod cards
for Project Mercury will equal three-tenths of the mod packet count

limit. Therefore, every three cards in the mod deck will require ten
locations for processing. This rule of thumb has been accepted because

3-111

MC 63-4

experience validates the following assumptions:

1) Ordinarily ALTER is used for the vast majority of modify and load
pseudo-instructions. Some CHANGE cards are used.

2) Very few remarks cards and list control pseudo-instructions
(SPACE, EJECT, DETAIL, etc.) are inserted for execution runs.

3) [Essentially all inserted principal and generative pseudo-instruc-
tions (the latter category including DEC, OCT, BCI) will have
location symbols.

4) The symbolic insertions cause essentially no additional '"doubly-
defined" symbol errors.

5) Every symbolic insertion makes, on the average, slightly more
than one symbolic reference in its variable field.

6) The number and type of items deleted from the program by the
mod deck has no effect on the size of the possible mod deck, ex-
cept for the number of ALTER cards.

7) Few of the ALTER cards call for pure deletion. Most are either
deletion with replacement or pure insertions.

8) The number of core locations required for processing mods is:
4 for each ALTER card, 2 for each inserted remarks card and
inserted SOS pseudo-instruction of any kind (principal, generative,
or list-control), 1 for each inserted location symbol, and 1 for
each symbolic reference in the variable field of an inserted sym-
bolic card.

Therefore, a typical 300-card mod deck for the Mercury Program-
ming System might include:

No. of
No. of Locations
Type of Cards Cards Required
ALTER 20 80
CHANGE 5 40
Machine and macro instructions 70 -
Remarks and list-control pseudo- 5 10
instructions
Principal pseudo-instructions 100 200
Generative pseudo-instructions 100 200

3-112

b)

MC 63-4

Location symbols attached to instructions, - 150
macros, and pseudo-instructions

Symbolic references in the variable fields - 320
of inserted symbolic cards

300 1000

In observing the relationships above, certain procedures for opti-
mizing the mod deck become apparent. For example, it would be
prudent to replace a BSS 1 with a PZE 0. It would be advantageous
to gather all remarks cards for one routine in one place, perhaps
at the start of the routine, and confine other comments to notes
alongside the instructions rather than interspersing isolated re-
marks cards throughout the routine. It would pay to conserve the
use of symbols and certain pseudo-instructions such as EJECT.
But most apparent, it would help greatly to eliminate CHANGE
and to reduce the number of ALTER cards. It would be better to
say ALTER 3, 6 and reinsert the two instructions formerly at alter
numbers 4 and 5 than to say ALTER 3,3 and ALTER 6, 6.

The separation count is the total number of machine instructions (in-
cluding those generated by the generative pseudo-instructions, such as
LBR and MACRO plus the number of principal pseudo-instructions).
This quantity appears in the address of the last word of the second
dictionary in a squoze deck. If the SUMARY input was a squoze tape
(SSW#2 up), the tape is advanced to pick up this word and read it out.
The maximum value of the separation count is 32767; if this limit is
exceeded a recompilation of the program fails and SOS prints out the
last symbolic card processed and the message COUNT TOO HIGH,
COMPILATION STOPPED. Thus, for large programs such as
CADFISS or MERCURY OPERATIONAL SYSTEMS, the difference be-
tween this number and the limit is important in planning additions or
revisions of the system and changes to the scheme for multicompila-
tions of the system.

3.12.4 Usage

One of the limitations imposed on the Mercury Programming System by

a)

SOS is the maximum size of the modification deck for an SOS Load and Go run.
The length of time a compilation can be used before recompiling depends upon
the number of modifications which can be made. To increase the life of a com-
pilation, the multi-compilation scheme is provided. The size of the modification
deck is dependent on:

The squoze tape size with respect to the number of symbols, pseudo-
instructions, and other SOS quantities.

3-113

MC 63-4

b) The version of the SOS tape being used for the executive runs.
c) The type of modifications being attempted.

The quantities from the squoze tape, which are used by SOS to allocate core
storage for tables to process the mods, appear on the first card of the squoze
deck, called the preface card. This card may be the first or second record of
each file on the squoze tape, depending on whether a replica of the JOB card
was written at the start of the squoze tape file by the particular version of SOS.
Stacked squoze decks from successive CPL or PS runs are separate by an EOF
mark on the squoze tape.

The number of modifications which may be processed in the available core
storage space is also a function of the space required in core storage by the
SOS programs. As previously stated, this is presently a fixed constant of
17 0041 0’ The constant for any given SOS tape is computed as follows:

(All numbers are decimal except location numbers which are in
parentheses and refer to the contents of the address or decrement
of those locations when tested by the M3 section of SOS)
D = number of dictionary entries
I = number of introduction words
F = number of footnote words
NL = 2's complement of next location for storing squoze text

M = the algebraic sum of all quantities considered from the mod deck
called the ""mod packet count limit."

Using the Mercury SOS tape and an ordinary mod deck (which has no ERASE,
ASSIGN, or SYMBOL pseudo-ops), an error message, MODIFICATIONS
EXCEED LIMITS will be printed if:

o(T7722), + c(T7722), = c(T7730), - [74 +(T7637) 4 + c(T7730) 4 + % c(77731) 4

+ e(TT734) 4 + c(77735) 4 + ¢(T7736) ; + 2c(77740)d] .

where 0(77722)a 2D + F + 3930, therefore fixed by the compilation. The
constant 3930 is fixed for a given SOS tape; in the unmodi-

fied IB version from New York it is 5030.
c(77722)d

1l

1 for each symbol in the variable field of mods.

0(7773O)a -10000 (=22768), a constant for a given SOS tape.

3-114

MC 63-4

c(77637) d= I from the compilation.

c("t’7730)d = NL: maximum 1760, minimum 1530, not under programmer
control,

c(77731) q° 2 for each ALTER and CHANGE in the mod packet. Multiplied
by 3/2 in the above inequality.

(3(7734)d = 2 for each EQU, SYN, or BOOL in the mod deck.
c(77735) qa° I inserted by the mod packet.
c(77736) q°= F added by the mod packet.

c(77740) q° 2 for each CHANGE and for each principal pseudo-instruction
without a location symbol; 1 for each ALTER, 1 for each loca-
tion symbol; and 1 for each principal pseudo~instruction.
Multiplied by 2 in the above inequality.

74 = constant for a given SOS tape.

Immediately after the compilation is performed, since D, F, I, and the con-
stants 3930, 22768, and 74 are known, the original inequality reduces to:

(2D + F + 3930) = 22768 - (I + 74 + M + NL).

That is, the failure will occur if M reaches (18764 - 2D - F-- I - NL). Since
the maximum value of NL is 1760 and the actual instantaneous value is not pre-
dictable, the safe limit is reduced to 17004 - (2D + F + I).

An SOS modification deck consists of one or more Modify and Load pseudo-
instructions (ALTER, CHANGE, ERASE, ASSIGN, SYMBOL), plus any desired
insertions to the program in the form of symbolic cards which may include
machine instructions, pseudo-instructions, macro instructions, and symbolic
locations and comments.

Certain combinations of these require more storage area for processing
than others. By judicious choice and arrangement of the pseudo-instructions
and symbolic insertions, the mod deck can be optimized, greatly increasing
the allowable number of modifications. Conversely, very small mod decks can
be produced which quickly exhaust the available storage.

a) Operator Procedures:

1) Ready the SUMARY binary program deck with data card behind it
in the on-line card reader.

2) Either ready a squoze tape on A5 (it will be there already if
created during an SOS CPL or PS job with SSW#6 up) or ready the
preface card of a row-binary squoze deck in the card reader be-
hind the data card.

3-115

MC 63-4

3) Press CLEAR and LOAD CARDS.

4) An HPR should occur almost immediately after an on-line printer
message (requesting either SSW 2 be depressed or the tape num-~
ber of the squoze tape be entered in the console keys in BCD,
right-justified) is printed. Tape number 285 would then be en-
tered as 000000021005, After setting the sense switch or keys,
press START.

5) After the SUMARY analysis has been printed, a halt occurs to per-
mit the operator to select one of these options:

(a) SSW #2 down if a preface card in the card reader is to be
analyzed.

(b) SSW #1 up if finished or if the operator wants to analyze the
first job on a squoze tape.

(c) SSW #1 down to analyze the next job on the same squoze tape
as the one just processed.

After selecting the option, press START. If (a) were chosen, re-
peat procedure from step “4).

6) A final halt occurs:

(a) If finished, press CLEAR and retrieve the SUMARY deck from
the card reader.

(b) To analyze the first job on another A5 tape, ready that tape
and press START. Repeat from step (4).

b) Error Conditions—an HTR occurs after ten unsuccessful attempts to
read A5. Check the density setting and press START to accept the
next attempt and continue,

c) Interpretation of Output—while SOS quantities listed in the SUMARY
analysis are exact, the estimate of the number of mods possible is an
approximation and should be used only as a guide to plan the time for
recompiling.

Moreover, it should be emphasized that the SUMARY program was
created to aid in avoiding only two known SOS limits—1) having the job
rejected by SOS because modifications exceed limits; 2) having a com-
pilation fail because of a COUNT TOO HIGH.

There are several other limits and restrictions which apply; among
these are: (1) the fixed number of dictionary entries permitted (8000),

3~116

d)

MC 63-4

(2) the fixed number of footnotes (principal pseudo-instructions) which
may be inserted (1000), (3) the number (20) and size (about 120 loca-
tions) of programmer macros which may be redefined or definedatload-
and-go-time, and (4) the prohibitions against altering in or out any
HEAD cards, or altering out any remarks of list-control pseudo-
instructions, or altering in any LBR cards.

Subroutines Used:

1) SUBR—performs a binary-to-BCD conversion for integers

2) SUPRES—suppresses leading zeros from a BCD word

3) CAP~—converts BCD to Hollerith card image and reads out one line
on-line, maximum of 72 characters

4) SKPUP—given a word count W = 23N + r, reads from A5 N records
if r= 0, N+ 1 records if r # 0.

Notes:

The following notes pertain to the SUMARY program flow chart, Figure
3-1.

Block 1—initialization consists of reading the data card with the SOS
constant, storing the constant, and ejecting a page on the printer.

Block 2—self explanatory.

Block 3—CAP is entered three times to print a three-line request of
the operator to enter the number of the squoze tape in the keys or, if
input is from the card reader, to depress sense switch #2. The printer
then ejects a page and the computer halts until the operator presses
START.

Blocks 4-6—self explanatory.

Block 7—one record is read from the squoze tape.

Block 8—self explanatory.

Block 9—the redundancy counter is reset to the maximum value, ten.
Block 10—some squoze tapes start each file with a replica of the JOB
card ahead of the preface card. This must be bypassed by SUMARY.

The 9L word of the preface card (and any squoze card) is minus; a
plus word is assumed to be a JOB card.

3-117

MC 63-4

3-118

Blocks 11-13—self explanatory.

Block 14—CAP is entered twice to print a 2-line message informing the
operator that ten successive redundancies occurred while trying to
read one record from A5.

Block 15—if START is pressed, an eleventh attempt is made and ac-
cepted, and processing continues.

Block 16—the 12 BCD characters from columns 16-27 of the original
JOBcardare obtained from the preface card and placed in a line image
which CAP then processes.

Block 17—the compilation date is obtained from the preface card and
CAP is entered to print four lines—the date, a blank line, a note that
all numbers are decimal rather than octal, and another blank line.
Block 18—each of the following eight SOS quantities are obtained from
the preface card and read out using the subroutines SUBR, SUPRES,
and CAP:

D—number of dictionary entries (symbols and principal
pseudo-instructions).

I—number of introduction words (generative pseudo-instruc-
tions and first of each sequence of remarks cards and list-
control pseudo-instructions).

F—number of footnote words (principal pseudo-instructions
except HEAD).

Number of words of noncommentary text (zero with squoze
tapes produced by the current SOS).

Number of words of text with commentary.
Number of programmer macros.

Number of HEAD cards.

Number of alter numbers.

Block 19—the quantity (2D + F + I) is computed and read out, using the
subroutines SUBR, SUPRES, and CAP.

Block 20—the SOS constant less the quantity (2D + F + I) is called the
mod packet count limit and is the number of core locations available
for the mod processing. It is computed and printed using the subroutines

MC 63-4

SUBR, SUPRES, and CAP. A blank line is then printed. The maxi-
mum number of mod cards possible for an SOS execution run is equated
to three tenths times the mod packet count limit computed above, using
the rule of thumb described earlier. This number is computed and
printed, using the subroutines SUBR, SUPRES, and CAP.

Block 21—self-explanatory.

Block 22—when input is a squoze tape (rather than cards) the additional
quantity ""separation count" described above is computed and printed
out, using the subroutines SKPUP, SUBR, SUPRES, and CAP.

Block 23—two blank lines, five explanatory comments, and three more
blank lines are printed, using CAP for each line. If input was tape, a
sixth comment concerning the separation count limitation on the com-
piler is printed before the three final blank lines.

Blocks 23-25—self-explanatory.

Block 26—a page is ejected on the on-line printer and the program in-
structs the operator with a 2-line message (using CAP twice) as fol-
lows:

PRESS START TO ANALYZE NEXT PREFACE CARD.

IF DONE, PRESS CLEAR. RETRIEVE THE SUMARY DECK
FROM THE CARD READER.

The printer skips three blank lines and the computer comes to a final
halt. The operator should either press START, returning control to
the initialization section of SUMARY, or CLEAR, and get off the
machine.

Blocks 27-28—the number of the squoze tape, which the operator
should have entered in the console keys, is printed in a final comment
after which a page is ejected on the on-line printer.

Block 29—the program notifies the operator of the following option and
then halts:

Depress SS 1 to analyze the next job on the same squoze
tape,

Leave SS 1 up to analyze the first job on another squoze
tape, to analyze a preface card, or if the run is complete.

Blocks 30-31—self-explanatory.

3-119

MC 63-4

Block 32—the program notifies the operator of the following options
and then comes to a final halt:

If the run is completed, press CLEAR and retrieve the
SUMARY deck from the card reader (as well as the output
from the on-line printer).

If the first job on another squoze tape is to be analyzed, that
tape should be readied and START pressed, returning control
to the initialization section of SUMARY. At this point, card
input may be introduced by readying row-binary preface card(s)
in the card reader and pressing START. Later sense switch
#2 will have to be depressed to designate card input.

Block 33—self-explanatory.
Blocks 34-38—either one or two EOF marks may separate stacked jobs
on the squoze tape. This routine positions the tape for the next job

regardless of which condition exists.

Block 39—self-explanatory.

3-120

MC 63-4

CLEAR,
LOAD CARDS LINK +5
1 * START CAP
NAME OF JOB
INITIALI ZE
CAP
DATE, BLANK,
NOTE, BLANK
2 INIT

CLEAR BUFFER
&
TEMP. STORAGE

SUBR, SUPRES, CAP
EIGHT SOS QUANTITIEY)
FROM PREFACE

CAP

REQUEST A5 TAPE COMPUTE AND

NO. OR SSW 2 OUTPUT
DOWN D& F+1
6
4
SSW 2 UP REWIND AS
13
s NO
BACKSPACE
READ PREFACE DYy™ SQUOZE TAPE |
CARD FROM v\‘} ONE RECORD
CARD READER 7

READ RECORD
FROM SQUOZE
o TAPE
n REDO

COUNT NUMBER
OF TIMES
THROUGH HERE

YES
REDUNDANCY

REREAD
SQUOZE RECORD

REINITIALIZE
REDUNDANCY | TEN TIMES
COUNT

10

08 CARD

REDUNDANCY
MESSAGE

FIGURE 3-7. SUMARY PROGRAM FLOW CHART (Sheet 1 of 2)

3-121

MC 63-4

0
COMPUTE, OUTPUT
“‘MOD PACKET COUNT
LIMIT,"" MAXIMUM

~N

MOD CARDS"
21 (n
YES | COMPUTE, OUTPUT
SSW 2 UP COMPILER
UNIT
NO I
23
CAP
BLANK LINES,
NOTES,
BLANK LINES
24 7
YES ENTER, STORE
SSW 2 UP TAPE NUMBER
FROM KEYS
NO
25 RDIN
CAP
P
FINAL COMMENT CA
FOR CARDS FINAL COMMENT
FOR TAPE
26
CAP
CAP
OPERATOR'S
OPTION OPERATOR’S
OPTION
CLEAR u

FIGURE 3.7.

3-122

31

SSW 1 UP

YES
Y unioan

REWIND, UNLOAD
SQUOZE TAPE

EJECT PAGE
ON ON-LINE
PRINTER

34 *

ADVANCE
SQUOZE TAPE
TO EOF

% 1

ADVANCE TAPE
OVER SECOND
EOF OR
1 RECORD

1

TURN OFF
EOF INDICATOR
FROM
FIRST FILE

37

SECOND EOF
PASSED

a8 { Mo

BACKSPACE
SQUOZE TAPE
ONE RECORD

TURN OFF
REDUNDANCY

CAP

OPERATOR’S
OPTION

INDICATOR

SUMARY PROGRAM FLOW CHART (Sheet 2 of 2)

YES

39 "‘_—

MC bo-4

3.13 PAPER TAPE INPUT PREPARATION (PAPTAP)

PAPTAP is the common name of two independent programs, PAPTAP-A
and PAPTAP-B which are used in the preparation of paper tape inputs, in tele-
type coding, for the Mercury tracking program. These paper tapes are used to
simulate receipt of radar data. They are fed to the tracking program from
local tape readers (ASR's) or they may be shipped or transmitted to radar sites
for long~distance retransmission to the computer.

3.13.1 Method

The source data for PAPTAP is a magnetic tape prepared by the Mercury
simulation programs for use by SIC. This input tape contains the radar data
needed. In the first of two runs (using PAPTAP-A), the radar is properly for-
matted and is punched on paper tape. In the second run (using PAPTAP-B), the
SIC input tape is compared with the punched paper tape. When a discrepancy is
found, the program stops and displays the error in the A-register.

The only comments which may be needed for an understanding of the flow
charts (Figures 3-8 and 3-9) are these: A complete radar transmission always
begins with J, J, LRTS, CR, LF, LTRS; and always ends with BLANK, FIGS,
H, LTRS. The two key points for the programs are the initial J and the final H.
Both programs search for the initial J and, having found it, output it (or com-
pare it) and succeeding characters until the H is found. Having found the H,
they assume that the next character is LTRS, and therefore immediately begin
searching for the next J.

Since the programs depend upon finding the initial J and final H, trouble
may occur when radar data with simulated teletype errors is used. That is, it
may well be that the 5-bit coding for H will appear (as a simulated error) before
the actual end of transmission, or that the final H will not occur at all. In short,
unless greater redundancy is built into the program (e.g., searching for five
out of six of the characters J, J, LTRS, CR, LF, LTRS for the beginning of a
transmission and a corresponding scheme for the end of transmission), it is
possible to produce a tape with incorrect data.

3.13.2 Magnetic Tape Formats
The first record on tape is a label, and it is skipped over by the program.
Each succeeding tape record contains 22 logical records. The appearance of

each logical record in the memory of the IBM 7094 (which was used to produce
the magnetic tape) and in the memory of the CDC-160 is illustrated below.

3-123

MC 63-4

IBM 7094:
— 36 bits -
Word 1 Time of arrival
2 | No. of words and subchannel No.
3 Time for interrupt
4 31 Zeros XXXXX
5 31 zZeros XXXXX
6 31 zZeros XXXXX 6 teletype
7 31 Zeros XXXXX characters
8 31 Zeros XXXXX
9 31 Zeros XXXXX
End of logical record
CDC-160:

—— 12 bits —

Word 1-6 Time of arrival

Each 7094 6-bit
7-12 | No. of words and subchannel No. byte is preceded
by 6 zeros.

13-18 | Time for interrupt

19-23 All zeros

24 | 0000000XXXXX fﬁ;igg
25-29 | All zeros

30 | 0000000XXXXX iﬁg?ﬁgtg ¥
31-35 | All zeros

36 | 0000000XXXXX E}tliigc’fg-y

37-41 | All zeros

3-124

42
43-47
48
49-53

54

0000000XXXXX Fourth TTY

character
All zeros

Fifth TTY
0000000XXXXX character
All zeros

Sixth TTY
0000000XXXXX character

End of logical record

3.13.3 Paper Tape Formats

The paper tape produced by PAPTAP has the usual teletype radar format
illustrated below. This format differs from the sequence of teletype characters
on magnetic tape in one respect only: teletype characters appearing on mag-
netic tape between the end of one transmission and the beginning of the next are
not punched on the paper tape.

The output format consists of three sections: preamble, variable number
of radar reports, and end-of-transmission sequence. These sections imme-
diately follow one another.

a) The preamble consists of the six characters J, J, LTRS, CR, LF,

LTRS

b) Each radar report consists of:

Characters 1-3 CR, LF, FIGS

4 Kind of data

5-6 Station identification

7 Radar type

8 Data validity

9-14 Time in hours, minutes and seconds
15-20 Azimuth

21-26 Elevation

27-33 Range

34 OBLIQUE STROKE

c¢) The end of transmission sequence consists of the four characters
BLANK, FIGS, H, LTRS.

3-125

MC 63-4

PAPTAP-A

INITIALIZA-
TION

|

OUTPUT
208 BLANKS

1

SKiP
FIRST
RECORD

S

NEXT
RECORD

FLAG
HAS J BEEN

FOUND
SELECT 4 SELECT
NEXT TTY NEXT TTY
CHARACTER FIRST CHARACTER
FROM MAG. GHARACTER FROM MAG.
TAPE 0

F EACH TAPE
TRANSMISSION
NO IS J NO
E END OF END OF
RECORD RECORD

NO OUTPUT
1ISITJ CURRENT
CHARACTER
YES YES
SET FLAG RESET FLAG
To IIYESI’ To "No"
7’
7
Z
H STILL THE OUTPUTH,
CURRENT LTRS, AND
CHARACTER 208 BLANKS
~ \\
EACH
TRANSMISSION
ENDS WITH H,
LTRS

FIGURE 3.8. PAPTAP.A PROGRAM FLOVW CHART

3-126

‘ END OF

PAPTAP.B

INITIALIZATION

SKIP
FIRST
RECORD

MC 63-4

RECORD

-

READ
NEXT
RECORD

!

< YES
END OF FILE)—E- HALT

FLAGa
HAS J BEEN
FOUND

SELECT NEXT
TTY CHARACTER
FROM MAG.
TAPE

SELECT NEXT
TTY CHARACTER
FROM MAG.
TAPE

FIRST
CHARACTER
OF EACH

TRANSMISSION
18

1SITJ

YES

SET FLAG a

TO *“YES”

END OF RECORD

FIGURE 3-9. PAPTAP.B PROGRAM FLOW CHART (Skeet 1 of 2)

3-127

MC 63-4

SET ADVANCE
NO PAPER TAPE
ISITH FLAG -
gt TO FIRST
_/\\ TO “YES NONBLANK
YES \
| N
RESET READ NEXT
FLAG \ EACH CHARACTER
TO “NO* TRANSMISSION FROM PAPER
ENDS WITH TAPE
H, LTRS
— DO TWO TAPES
T
FLAG MATCH
TO “NO’’ NO
\ ERROR HALT
DISPLAY PAPER
S
ARACTER
FROM PAPER CHARAC
TAPE
3 FOSSLAY MAG.|
o RROR HALT PROG. HAI B .
ISITH DISPLAY PAPER D|$&YHM‘;£ TAPE CHAR.
TAPE CHAR. TAPE CHAR.
YES
READ NEXT
CHARACTER
FROM PAPER
JAPE
\
ERROR HALT PROGRAM HALT
ISITLTRS | DISPLAY PAPER DISPLAY MAG.
TAPE CHAR. TAPE CHAR.

C
|
|
1

PROGRAM NOW
REEXAMINES
THE “‘H” FROM
MAG. TAPE

FIGURE 3.9. PAPTAP.B PROGRAM FLOW CHART (Sheet 2 of 2)

3-128

MC 63-4

3.14 LOW-SPEED OUTPUT PRINTER PROGRAM (MXTHLG)

MXTHLG examines the MXPRLG output tape for low-speed TTY data re-
ceived from Mercury radar stations and unpacks, converts, and formats it for
off-line printing.

The flow chart for MXTHLG is shown in Figure 3-10.

3.14.1 Input Requirements

Input to MXTHLG is the output tape from the MXPRLG program for a Mer-
cury mission, simulated or unsimulated, and a 4-card deck prepared for the on-
line card reader. The cards contain internal station numbers, a density mutila-
tion coefficient constant, and the ID for the data (mission).

3.14.2 Output Requirements

The output tape A3 will contain in decimal form all low-speed input data
received at Goddard during a mission. When printed, each line of data from the
output tape contains a radar message listing: kind of data, internal station num-
ber, valid, type of radar, time of message (hours, minutes and seconds),
range, azimuth, and elevation. For example:

KIND INTERNAL TYPE

OF STA. OF TIME AZIMUTH
DATA NO. RADAR VALID HR. MIN. SEC. (degrees)
X XX X X XX XX XX XXX, XXX
ELEVATION RANGE
(degrees) (yards)

XXX, XXX XXXXXXXX . XX

- 3.14,3 Method

MXTHLG reads all data from the MXPRLG output tape, separating the low-
speed data from other messages, and edits and writes this on an auxiliary tape
to produce a low-speed TTY tape. The program reads data from the TTY tape,
repacking and converting it to the correct format, and then writes the reformat-
ted data on the output tape.

3-129

MC 63-4

3.14.4 Usage
Operator's Procedure:
a) Ready A4 with an output tape from MXPRLG.
b) Ready A3, A5 with blank tapes.
¢) Ready A9 with FORTRAN written station characteristic tape.
d) Ready C1 program tape (postflight).
e) Ready cards in on-line card reader.
f) Sense Switches 1 and 7 down, *
g) Press CLEAR and LOAD CARDS buttons.

h) Print A3 under program control.

*Other Sense Switches offer various options (see flow chart).

3-130

READ: t, 7,V REWIND B6
YES FROM READ DATA
B6 TAPE CARD WITH
HO AND HS
NO
1A
READ CARDS
DATA FOR CONVERTING
EXTERNAL TO
INTERNAL STA. NO.
READ CARD
WITH
DATA - RCONS
AND |DAY
READ CARDS
OBSERVED IS LAST
RECORD ON

TVLSPG

DATA Ry, A, Ey

TAPE = 00099

WRITE OBSERVED
DATA Ry, Ag, Eq

MC 63-4

YES

WRITE SENTINEL
ON A4 TAPE
FOLLOWING

WITH EOF

1S BCD (ID)
CARD £ 0

ON A4 TAPE
READ-CARDS;
D OF
RUN
READ - A5
' TAPE: t5, Ry,
READ-CARDS Ao Eg -
MAXIMUM SCALE OBSERVATION
FACTOR AR,
AA, AND AE
DOES RECORD YES

CONTAIN 00099

NO

PUNCH -
OBSERVATION
tor Ror Ag. Eg

ON-LINE PUNCH

!

2A

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 1 of 10)

3-131

MC 63-4

3-132

SET TEMPORARY
STORAGE CELLS

WRITE HEADING AND
ID AT TOP OF PRINT
PAGE (A3 TAPE)

WRITE HEADING AND
ID AT TOP OF PRINT
PAGE (ON-LINE PRINTER)

TO ZERO
\ YES
SW1 DOWN j
NO I
T\ ves
SW3 DOWN J
NO]

SW1 DOWN °

avayale

SW4 DOWN > YES
i NO
> >
READ T, R, V, MASS,
AREA, ETC. FROMCARDS
YES

IPRINT$ 0

READ CARD — MAXIMUM
SCALE FACTOR AR, AA,
AND AE

\
iNoj

> >
WRITE - T, R, VON
A3 TAPE

WRITE HEADING AND
ID ON A3 TAPE -SET
FOR A7-QUTPUT

SW3 DOWN > YES

NO

WRITE T, R, V ON
THE ON-LINE PRINTER

3A

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 2 of 10)

WRITE SECOND
PART OF HEADING
ON A3 TAPE

YES

SW3 DOWN }

NO

WRITE SECOND
PART OF HEADING
ON ON-LINE PRINTER

COMPUTE: N WHERE N
INDICATE HOW FAR TO
INTEGRATE,BACKWARDS

FOR T OF R, V VECTOR

!

CONVERT TIMES FROM

HRS, MINS AND SECS

TO MINUTES OF LIFT OFF,
Ty, AND Ts

1

ESTABLISH THE (HO)

ORBIT TABLE BY IN-

TEGRATING BACK TON
AND FORWARD TO 900 MINS

!

SAVE ORBIT
(HS) TABLE
WITH (AT =HS)

YES

SW5 : DOWN

NO

WRITE ORBIT TABLE
ON A3 TAPE

READ FORTRAN STATION
CHAR. TAPE — RESTORE
INITIAL T, R, V

YECTOR

COMPUTE TpmiN AND
Tmax OF ORBIT TABLE
FOR LAGRANGE INTERPOL.

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Skeet 3 of 10)

MC 63-4

3-133

MC 63-4

3-134

READ OBSERVATION
FROM TAPE A5
To: Ror Ao, Eo

!

CONVERT: FROM
EXTERNAL STATION
NO. TO INTERNAL STA.NO.

|

CONVERT: TIMES
FROM HOURS, MINUTES,
SECONDS TO MINUTES

OBSERVATION
LIVE DATA

ADD LIFTOFF
TO TIME OF
OBSERVATION

L

INTERNAL STATION
NUMBER = 2

INTERNAL STATION
NUMBER = 19

INTERNAL STATION
NUMBER =20

NO

EXBIT

TVCVPG

IS THIS DATA TO
BE PLOTTED
OFF-LINE

YES

SET UP HEADING AND ID
FOR B7 TAPE FOR
OFF-LINE PLOTTING

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet ¢ of 10)

MC 63-4

IS SWITCH SET FOR YES SET UP HEADING AND ID
PLOTS AND GRAPHS FOR PLOTS AND GRAPHS
ON A3 TAPE ON A3 TAPE
NO
(SW6 DOWN YES @
' NO

C SW1 DOWN YES e
i NO

CONVERT - TIME
OF OBSERVATION FROM
MINUTES TO SECONDS

INTEGR

1

ERROR RETURN

YES

y NO

OBTAIN VALUES FROM
STA. CHAR. BLOCK FOR
REFRACTION COR-
RECTION TO R, Ao, Eo

t

CVINL

RAECO

o

COMPUTE: AA=Ag —
AA=COS(E,) *g‘A
AE =Eq - Ec
AR =Ry - Re

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 5 of 10)

3-135

MC 63-4

CONVERT:
AA TO DEGREES
AE TO DEGREES
AR TO YARDS

!

CONVERT:
Ao TO DEGREES
E, TO DEGREES
Ro TO YARDS

SAVE:
To= TIME ;

Ro= RANGE ; lFOR
Ao= AZIMUTH 5 PLOT-
E,= ELEVATION) TERS

!

YES

1S THIS DATA FROM YES SW1 DOWN YES IS DATA OVER
SAME STATION 30 MINUTES OLD
NO NO NO
1230
KK = UPDATE ORBIT NUM-
, BER BASED ON

CURRENT DATA

E,: 3 DEG.

y <

COMPUTE: STANDARD
DEVIATION OF
AR, AA AE

1S THIS DATA FROM YES
SAME STATION
NO

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 6 of 10)

3-136

COMPUTE:
SIGMAS
AR, AA AE

!

OUTPUT SIGMAS
OF AR, AA, AE AND
NO. OF VALID AND

NON-VALID
OBSERVATIONS
ONTO A3 TAPE
OUTPUT SIGMAS
YES | OF KR, XA, AE AND
SW3 DOWN NO. OF VALID AND
NON-VALID
OBSERVATIONS
NO ON THE ON-LINE
PRINTER
RE-INITIALIZE
TEMP STORAGE
CELLS

ORBIT
TABLE REACH
60,000 FT.

YES

OUTPUT A3 TAPE
WITH: REENTRY,
IMPACT POINT,
LAT. & LONG.

MC 63-4

YES PRINT ON-LINE
| REENTRY, IMPACT
POINT, LAT. & LONG

NO]

LAST OBS.
FOR PROCESSING

H=1Il-1
SAVE LAST
TIME OF OBS.

IS SWITCH SET FOR\ YES
GRAPH AND PLOTS
ON A3 TAPE

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 7 of 10)

3-137

MC 63-4

SAVE:

TIME,, RANGE,,
AZIMUTH,, ELEV

OUTPUT HEADING
AND 1D FOR NEW
PAGE A3 TAPE

B7 TAPE (OUTPUT)\ YES OUTPUT FOR
TRIGGERED SUMMATIONS
/ 0-C FOR B7
NO
OUTPUT
SUMMATIONS
ON A3 TAPE
\ YES ON-LINE PRINT
SW3 DOWN OF SUMMATIONS
OF Ry, Aq, Eo
NO

OUTPUT NEW OBSER-

VATION ON A3 TAPE

R, AR Ay AA
Eo, AE

X YES ON-LINE PRINT
SW3 DOWN OF NEW OBS. OF

Ro. Ao, Eo
AR, AA, AE

NO

O,

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Skeet 8 of 10)

3-138

MC 63-4

AFFIRM THAT
THIS 1S LAST OBS.
OF SAME STATION

YES IS THIS THE
[LAST OBS.
TO DATA
NO *
C SW1 DOWN YES °
y No
OBSERVATION YES \ YES
C OF SAME STATION IKD>7 J
y no o
UPDATE ORBIT KD =7 YES
NUMBER =
NO
6 SET:
kD=8
®
REWIND A5, A9
BEFORE EXIT
YES SWITCH YES
SW1 DOWN SET FOR PLOTS

ON B7 OR A3 TAPE

NO

NO

END PLOTTING
AND GRAPHING
CONFORMATION

EXIT

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 9 of 10)

3-139

MC 63-4

WRITE ON A3 TAPE
OBSERVATION
OF SAME STATION

YES PRINT ON-LINE
SW3 DOWN OBSERVATION
OF SAME STATION

NO

9

—® O

SET: Ag=0
Eo=0
Ry =0

O

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Skeet 10 of 10)

3-140

MC 63-4

3.15 LOG TAPE HIGH-SPEED INPUT PROGRAM (HSIN7)

HSIN7 examines the log tape for high-speed IP 7094, B-GE, or Bermuda
radar input messages.

The flow chart for HSIN7 is shown in Figure 3-11.

3.15.1 Input Requirements

The only input to HSIN7 is the log tape from a Mercury mission—simulated
or unsimulated.

A log tape is composed of one file which contains up to 9286 logging buffers;
each buffer is one record and is composed of ten 17-word logging blocks. Each
logging block begins with a 5-word heading; the remaining 12 words contain
either logged data or a nondata mask. The heading contains a data identifica-
tion by the DCC subchannel, an indication of whether the data was transmitted,
a data word count, a logging block serial count, the mission phase, and two
time tags. One time tag is associated with the data itself and the other speci-
fies the time the data was logged.

3.15.2 Output Requirements

The output tape contains the selected high-speed messages printed in tab-
ular form. Figure 3-12 shows the output of HSIN7. The heading on each output
page indicates IP 7094, B-GE, or Bermuda radar input followed by a heading
above each column. An explanation of the column headings is given below.

a) Logging Time—the time, in seconds, shown by the internal clock at
time of trap. If the internal clock were synchronized with Greenwich
Mean Time (GMT), this column would show GMT. In the example, the
message was logged at 44387.423 (or 12 hours), 19 minutes, and 44.4
seconds.

b) Message Time—the time associated with each of the incoming position
and velocity vectors. It is incorporated within the input message. In
the example in the table, the time of the position and velocity vectors
is 275. 000 seconds after liftoff.

c) X, Y, and Z—indicate the components of the position vector using the
appropriate units of the input source.

d) X, Y, and Z—indicate the components of the velocity vector using the
appropriate units of the input source.

3-141

MC 63-4

e)

f)

g)

Discrete Signals—in the B-GE section, the discrete signal column
gives an octal representation of eight binary bits. Each of the binary
bits is contained somewhere within the input message. The first bit
indicates that liftoff has occurred, the next four bits are data quality
flags, the next two bits indicate Booster Engine Cutoff (BECO) and
Sustainer Engine Cutoff (SECO, respectively, and the last bit gives the
B-GE, GO-NO-GO recommendation.

Checksum—if the checksum in the input messages is identical to the
computed checksum, this column contains a zero; otherwise, it contains
a one.

Parity—the correct format for input messages is such that the parity
is always odd. An odd parity is indicated by a one in this column. A
zero indicates incorrect parity.

Table 3-1 gives the quantity associated with bits 1 through 72 of the telem-
etry format shown in Figure 3-12.

3.15.3

3.15.4

b)
c)
d)

e)
f)

g)

3-142

Method

(Not applicable.)

Operator's Procedures

Ready the standard SOS system tapes.
Ready the log tape on B6.

Ready a blank on A3 for output.

Ready the HSIN7 deck

Press CLEAR and LOAD CARDS.

Program will print operating instructions on line.

Set Keys = 1 for B/GE

Set Keys = 2 for IP 7094

Set Keys = 3 for BDA radar in radians.
Set Keys = 4 for BDA radar in degrees.

If a special binary output of B/GE or IP is desired set appropriate entry
key, place a blank tape on A4 and depress sense switch 1.

MC 63-4

START
PAUSE 1P 7094 BGE BDA RAV BDA RAW END JOB
SELECT RADAR
ENTER KEYS SELECTED LECTED IN RADIANS IN DEGREES SELECTED
— — YES
READ READ READ READ WRITE EOF
1 RECORD 1 RECORD 1 RECORD 1 RECORD ON OUTPUT
FROM INPUT FROM INPUT FROM INPUT FROM INPUT TAPE, RE-
TAPE TAPE TAPE TAPE WIND, UNLOAD
EOF EOF EOF EOF @
NO # £

YES

EO RECORD

TEST NEXT
LOGICAL REC.
FOR SUB-
CHAN 2

EQ RECORD

TEST NEXT
LOGICAL REC.
FOR SUB-
CHAN 1

EO RECORD

TEST NEXT
LOGICAL REC.

EO RECORD

TEST NEXT

NO

MOVE LOGICAL MOVE LOGICAL

OVE LOGICA OvE Losica MOVE LOGICAL MOVE LOGICAL
OUTPUT BUFR OUTPUT BUFR RECORD TO RECORD TO
(ODD FRAME) (ODD FRAME) OUTPUT BUFR OUTPUT BUFR

EO RECORD EO RECOR@ UNPACK AND UNPACK AND

WRITE ON WRITE ON
‘ YES ‘YES TAPE TAPE
READ 1 READ 1

RECORD FROM RECORD FROM| | Les-

INPUT TAPE INPUT TAPE

TEST NEXT
LOGICAL REC

FOR SléBCHAN Z2

=2

MOVE LOGICAL MOVE LOGICAL
RECORD TO RECORD TO
OUTPUT BUFF OUTPUT BUFF,
(EVEN FRAME) EVEN FRAME
UNPACK BOTH GNPACK BOTH
FRAMES AND FRAMES AND
WRITE ON WRITE ON
TAPE TAPE

L

FIGURE 3-11. HSIN7 PkOGRAM FLOW CHART

3-143

MC 63-4

0 0
0 0
39/38 30/39

0] 0
0 0
39/38 32/39

1
b

[}
LL

0 o
0 0o

IS Lig
VZNZY Jd0S

INISH 304 SLYWYO0d4 39VSSIW ONI990T 40 $3TdWVYX3 'ZL—€ 3¥NIId

0 [2seil 6L09°GGC '9vGes8ie I ¥S9E" I SLVyS°'GGC "9vElBIC l 6°cr*02*Cl 9 911 Eyvvy
0 L2se 1} 6L09°GSC "9vse8ie } v&oE” 1} GLPG GGC "9vElsic l 6 cv*0c*Ci S 801 "evyvy
30/38 A3T3 4 HLOWIZV 4 JONvVY 4 104 A3 A HLOWIZY A JONVY A LOA JWIL 9SW HO8NS 3WIL 9071

$33¥493a NI ¥Yvavy MVY VONWY¥3IA

O L9v62r O 19169’y 'EV9LOZl | CEVIEP'O V6EBYE’'V "OBYO0C] I 179Z*12*2l 9 9lE98VY

0 L9v6Zyr O 19169€°'v "€V9L0Zi | ZEVIEV'O PY6EB9E’V "08Y90C) L 4r9Zxlz*el & BOE'98YY

30/38 A3T3 4 HLAWIZY 4 39NVY 4 104 A3T3 A HLOWIZY A 3ONvY A LOA 3WIL 9SW HO8NS 3WIL 907
SNVIGVY NI ¥dVvavVY MVY VANWY¥Y3E

1111000018 L1ELLOOLELE 1100000000 0000000000 1000000000 0000000010 0000000100

1111000011 1111100141 1100000000 0000000000 000000000 0000000010 0000000100
| O L10 8890856 0~L2Z11LE8°0 VEIBIEG I-GELIEYS 0O 9851v91 0 06E8106°0 v96° IVE LVl SSvvy
1 O L10 8890666 0~£211/£8°0 VEIBIES I=SELIEYS 0O 9851791 0 06€8106°0 ¥96° IPE V1 GSYYY

068.9Gv€21 068L9SVEZL 068LI9SVECI 068L9SYEC! 068L9SPEZL 068L9SVEZL 068LISVEC] 1v04
£999999999 9GGSGGSGGS SYyvvyvryy VEEEEEEEEE €cgcecedee clitillill | ASLINIT3L
d O 28a 10a z 100 A 100 X Z A X ANIL W 3WIL T

ILndNI1 39/8

01 1100000000 110100001 100000000 0000000000 000000000 Q000000010 0000000100

01 1100000000 1110100001 1100000000 0000000000 |000000000 0000000010 0000000100
I O L120VS1°0 LOL9YG2 0 19Iv6S9°0 800S60G°0 992€LG8'0~ [T6IEET'0 000°SLZ €Cv’L8EVY
1 O £120VG1 0 LO19VS2°0 191¥659°0 8005605 0 992€.G8°0= LC6IEEC 0 000°GLZ €LV LBEVY

21 068/9GPEZ 068LISYEZI 068L9GVEZL 068L96FEZI 068L9SVECL 068LISVECL 068L9SVECI 1v03
LL £999999999 9GGSGGSGSS Svivvvivvyy VEEELEEEEee €2ceeegede chitiliillL |} A¥13W3a3L
d D 10ad z 10a A 100 X z A X JNIL W 3WIL 1

ILOdNI h60LdI

3-144

MC 63-4

Table 3-1. TELEMETRY FORMAT, IP 7094 AND B-GE
Bit No. Quantity Comment
1 Selected source (1) Note 1
2 Selected source (2) Note 1
3 Selected source (3) Note 1
4 Start BDA solution 1 = START
5 1 of 3 Retrogrades fired 1 = Has occurred
6 2 of 3 Retrogrades fired 1 = Has occurred
7 3 of 3 Retrogrades fired 1 = Has occurred
8-9 Spares
10 Source selected (1) Note 1
11 Source selected (2) Note 1
12 Source selected (3) Note 1
13 Start BDA solution 1 = START
14 1 of 3 Retrogrades fired 1 = Has occurred
15 2 of 3 Retrogrades fired 1 = Has occurred
16 3 of 3 Retrogrades fired 1 = Has occurred
17-25 Spares
26 3 of 3 Retrogrades fired 1 = Has occurred
27 2 of 3 Retrogrades fired 1 = Has occurred
28 1 of 3 Retrogrades fired 1 = Has occurred
‘ 29 Start BDA solution 1= START
30 Source selected (3) Note 1
31 Source selected (2) Note 1
32 Source selected (1) Note 1
33-42 Spares
43 1 of 3 Posigrades fired 1 = Has occurred, Note 2
44 2 of 3 Pocigrades fired 1 = Has occurred, Note 2
45 3 of 3 Posigradeés fired 1 = Has occurred, Note 2
46 1 of 3 Retrogrades fired 1 = Has occurred, Note 2
47 2 of 3 Retrogrades fired 1 = Has occurred, Note 2
48 3 of 3 Retrogrades fired 1 = Has occurred, Note 2
49 Liftoff 1 = Has occurred
50 Escape tower released 1 = Has occurred
51 Tower escape rockets fired 1 = Has occurred
52 Spacecraft separation 1 = Has occurred
53 Abort sequence initiated 1 = Has occurred
54 Abort phase has started 1 = Has occurred
55 Orbit phase has started 1 = Has occurred
56 Selected source (3) Note 3
57 Sustain engine cutoff 1 = Has occurred
58 Liftoff 1 = Has occurred
59 Escape tower released 1 = Has occurred
60 Tower escape rockets fired 1 = Has occurred

3-145

MC 63-4

Table 3-1 (continued).

TELEMETRY FORMAT, IP 7094 AND B-GE

Bit No. Quantity Comment

61 Spacecraft separation 1 = Has occurred

62 Abort sequence initiated 1 = Has occurred

63 Abort phase has started 1 = Has occurred

64 Orbit phase has started 1 = Has occurred

65 Orbit phase has started 1 = Has occurred

66 Abort phase has started 1 = Has occurred

67 Abort sequence initiated 1 = Has occurred

68 Spacecraft separation 1 = Has occurred

69 Tower escape rockets fired 1 = Has occurred

70 Escape tower released 1 = Has occurred

71 Liftoff

72 Parity for previous 71 bits 1 = Even number of 1's

0 = Odd number of 1's
Notes:
1. Source selection is indicated by the following bit configurations:

B-GE
IP 7094
BDA

3-146

Selected Source (1)

(Bits-1, 10, 32) (Bits-2, 11, 31)

Selected Source (2)

(Bits-3, 12, 30, 56)
Selected Source (3)

0 0 1
1 0 0
0 1 0

Retrogrades TLM bits 46, 47 and 48 will remain until GSFC has
made the program changeover. These bits will then be disconnected
and used as spares.

Selected source (3) will be wired to bit 56. This arrangement has a
twofold purpose: (1) enable the program to use the new TLM format
without implementing a program change, and (2) if they inadvertently
selected Bermuda without Short Arc incorporation they will auto-
matically select IP 7094. This particular bit will be disconnected
and used as a spare after the program changeover.

Sustainer Engine Cutoff signal is generated by operation of the SECO
Over-ride switch at the Spacecraft Communicator's Console. Oper-
ation of this switch inserts a ""one'' in bit position 57 and also into the
three Abort Sequence Initiated bits, 53, 62, and 67.

This format constitutes a complete Telemetry Event Data Message.
Transmission of this message is repeated each 74 milliseconds.
The most significant bit is transmitted first.

MC 63-4

3.16 LOG TAPE HIGH-SPEED OUTPUT PROGRAM (MXHSPR)

MXHSPR examines the log tape for high-speed output data transmitted
to Cape Canaveral (DCC subchannel 3). This data is unpacked, scaled, and ar-
ranged for off-line printing. The flow chart for MXHSPR is shown in Figure
3-13.

3.16.1 Input Requirements

The only input to MXHSPR is the log tape of a Mercury mission—simulated
or unsimulated—on tape unit B6. The log tape is described in subsection 3.15.1.

3.16.2 Output Requirements

The output tape, A5, contains the high-speed output data transmitted by
Goddard to Cape Canaveral in tabular form. The data is segregated both by
mission phase and by the displays serviced by the particular data.

When printed, each line of print from the output tape contains the logging
time tag expressed in hours, minutes, and seconds of GMT. The remainder of
the line depends upon the data and is a function of display equipment, code, mis-
sion phase, and the data frame.

The following examples of MXHSPR output show the computed values trans-
mitted to Cape Canaveral to drive plotboards 1, 2, and 4 and the digital displays
(during launch plotboard 3 is not drived from Goddard). MXHSPR searches the
log tape for values transmitted to, for example, plotboard 1 at Cape Canaveral
during the launch phase. These values are then assembled and printed under the
heading LAUNCH PHASE—PLOTBOARD ONE as shown below.

LAUNCH PHASE — PLOTBOARD 1

V/Vr V/Vr
v (less than .19) Y (less than . 9)
. 00000000 . 03999999 . 00000000 . 00000000
. 00000000 . 03999999 . 00000000 . 00000000
. 00000000 . 03999999 . 00000000 . 00000000
. 00000000 . 03999999 . 00000000 . 00000000
. 00000000 . 03999999 . 00000000 . 00000000
. 00000000 . 03999999 . 00000000 . 00000000

3-147

MC 63-4

LAUNCH PHASE — PLOTBOARD 1 (Cont'd)

V/Vr
TIME Y (greater than .9)
—. 99999809 . 89999998
—. 99999809 . 89999998
1 —.99999809 . 89999998
1 —. 99999809 . 89999998
2 —. 99999809 . 89999998
2 —. 99999809 . 89999998

Plotboard 1 shows flight path angle ¥ and velocity ratio V/ Vr associated

with a TIME column. TIME is in seconds after liftoff. Because of plotboard
scaling, three columns of both ¥ and V/ Vr are shown.

The same operation is performed for the other plotboards and displays
during the launch phase. MXHSPR also searches the log tape for the values
displayed during the orbit phase. The values are assembled and printed under
the heading ORBIT PHASE. Subheadings are printed for each of the plotboards,
wall map, and digital displays as noted in the examples.

Some displays, for example plotboard 1, show different quantities during
the launch and orbit phases. During launch, plotboard 1 shows flight path angle
Y vs. velocity ratio (V/ Vr); during orbit it shows altitude vs. velocity.

The example for plotboard 2 shows crossrange deviation (Y _Ynom) and

downrange distance D (D less than 60). TIME is in seconds after liftoff and ad-
ditional columns of downrange distance, height H (D less than 60) are shown
because of scaling.

LAUNCH PHASE — PLOTBOARD 2

D (D less H (D less D (D greater H (D greater
Y-Y om than 60) than 60) TIME than 60) than 60)
.05865091 .00000000 .00000000 . 00000000 . 00000000
. 05865091 . 00000000 .00000000 . 00000000 . 00000000

1
1
.05865091 .00000000 .00000000 2 .00000000 . 00000000
2
3

.05865091 . 00000000 .00000000 . 00000000 . 00000000
.05865091 .00000000 .00000000 . 00000000 . 00000000

3-148

MC 63-4

The first two columns of the plotboard 4 example show the latitude and
longitude of the impact point during launch if the firing of the retrorockets was
withheld until the spacecraft reached an altitude of just above 450, 000 feet.
The next two columns show the impact point if the escape rockets were fired
immediately. Also, if tower separation has already taken place, then these
columns show impact point if retrorockets are fired 30 seconds from present

time. The column TIME indicates time in seconds associated with each set of
values.
LAUNCH PHASE — PLOTBOARD 4
LATITUDE LONGITUDE LATITUDE LONGITUDE
(maximum) (maximum) (30 seconds) (30 seconds) TIME
11.99999809 —. 00586510 28,49266434 —80.50439835
11.99999809 —. 00586510 28,49266434 —80.50439835
11.99999809 —. 00586510 28.49266434 —80.50439835
11.99999809 —. 00586510 28.49266434 —80.50439835
11.99999809 —. 00586510 28.49266434 —80.50439835

The following example shows the values transmitted to the wall map at
Cape Canaveral and the time in seconds after liftoff that the transmission oc-
curred. It shows latitude, longitude, and time (present position of spacecraft.

LAUNCH PHASE — WALL MAP

LATITUDE (P. P) LONGITUDE (P.P) TIME
28.50439644 —80.41055679
28.50439644 —80.41055679
28.50439644 —80.41055679 1
28.50439644 —80.41055679
28.50439644 —80.41055679 2

Data transmitted to the strip charts (see the following example) is the result
of computed values (as a result of input) versus nominal values. The first col-
umn is YYpom from B-GE data. The second column would be the same

(y-ynom) for either IP 7094 or raw radar data whichever is the selected source.

The next two columns show the difference in velocity ratios {% — %:‘(nominal)
r r
for B-GE and the IP 7094. The TIME column contains time in seconds after

liftoff.

3-149

MC 63-4

LAUNCH PHASE — STRIP CHARTS

Ynom YYnom VIV = V/V nom VY2 = V/V% nom
(B-GE) (AN/FPS-16) (B-GE (AN/FPS-16) TIME
—, 00488663 -, 00488663 —. 00003913 —-—. 00003913
—. 00488663 —.00488663 —. 00003913 —. 00003913
—. 00488663 —. 00488663 —,. 00003913 -—. 00003913 1
—. 00488663 —. 00488663 -—.00003913 —. 00003913 1
—. 00488663 —. 00488663 —. 00003913 —. 00003913

The output of MXHSPR to some of the digital displays during launch is
shown below. Following these examples is a glossary of the column headings:

LAUNCH PHASE — DIGITAL DISPLAYS

AT Recovery Area TIME
00 00 00 0 0

00 00 00 0 0 1

1

00 00 00 0 0 2

2

00 00 00 0 0 3

3

00 00 00 0 0 4
r — R y I.LA. o.C. v/v,
000.0 00.00 00.0 00 0. 0000
000.0 00. 00 00.0 00 0. 0000
000.0 00. 00 00.0 00 0. 0000
000.0 02,30 28.3 00 0.0510
000.0 02.178 28.3 00 0.0511

AT — This column indicates elapsed time to fire retrorockets to impact in next
recovery area.

3-150

RECOVERY AREA—this column will contain two numbers:

00 — Recovery Area A
01 — Recovery Area B
02 — Recovery Area C
03 — Recovery Area D
04 — Recovery Area E
10 — Recovery Area 1A
11 — Recovery Area 1B

TIME — Time in seconds after liftoff:
r—R — Height in miles
Y — Flightpath angle in degrees
I.A. — Inclination angle
O.C. — Orbit capability
v/ V.. — Ratio of velocity to velocity required

MC 63-4

Examples of values transmitted to Cape Canaveral during the orbit phase,
logged on the log tape and subsequently printed by MXHSPR, are shown below.

A glossary of unexplained column headings follows the examples.

ORBIT PHASE — WALL MAP

LATITUDE LONGITUDE LATITUDE LONGITUDE
(P.P.) (PP) (R. F. in 30 sec) (RF in 30 sec) TIME
30.85043907 —69.85337257 —,03910065 —.17595291 5 30
30.92863846 —69.50146675 —.03910065 —. 17595291 5 36
31.00684166 —69.14955902 —,03910065 —. 17595291 5 42
31.08504295 —68.79765511 —,03910065 —. 17595291 5 48

ORBIT PHASE — DIGITAL DISPLAYS

ORBIT -
GTRS NO. GMTLC LATITUDE LONGITUDE r—R
04 28 02 01 20 02 19.36 —065.0 092.9
04 27 50 01 20 02 19.36 —065.0 092.9
04 27 36 01 20 02 19,36 —065.0 092.9
04 27 26 01 20 02 19.36 —065.0 092.9
04 27 14 01 20 02 19.36 —065.0 092.9

3-151

MC 63-4

ORBIT PHASE — DIGITAL DISPLAYS

APOGEE HT. I.A. ORBIT CAP. TIME VELOCITY
124.9 32.4 00 5 36 25660
124.8 32.4 00 5 48 25660
124.8 32.4 00 6 2 256660
124,7 32.4 00 6 12 25660
124.7 32.4 00 6 24 25660

GMTRC ECTRC GMTRC EPO ECTRC EPO GMTRC-EOM
15 33 21 00 19 36 16 41 38 01 27 53 19 46 39
15 33 21 00 19 36 16 41 38 01 27 53 19 46 39
15 33 21 00 19 36 16 41 38 01 27 53 19 46 39
15 33 21 00 19 36 16 41 38 01 27 53 19 46 39
15 33 21 00 19 36 16 41 38 01 27 53 19 46 39

ECTRC-EOM GMTRS ICTRC RECOVERY AREA TIME .

04 32 54 19 47 23 00 —01 16 11 6 6
04 32 54 19 47 23 00 —01 16 11 6 18
04 32 54 19 47 23 00 —01 16 11 6 30
04 32 54 19 47 23 00 —01 16 11 6 42
04 32 54 19 47 23 00 —01 16 11 6 54

ORBIT PHASE — PLOTBOARD 1

ALTITUDE VELOCITY TIME
92.86412510 25659.82404041 5 30
92,86412510 25659. 82404041 5 36
92.86412510 25659.82404041 5 42
92,86412510 25659. 82404041 5 48

3-152

ORBIT PHASE — PLOTBOARD 2

MC 63-4

r—R TIME ALTITUDE TIME
109. 09090826 334.31069946 93. 25513181 5 30
109. 09090826 334, 31069946 93. 25513181 5 36
109. 09090826 334.31069946 93, 25513181 5 42
109, 09090826 351.90599918 93. 25513181 5 48
109. 09090826 351, 90599918 93, 25513181 5 55

ORBIT PHASE — PLOTBOARD 3
PERIGEE
LONGITUDE ELAPSED TIME ECCENTRICITY TIME
—92. 02346039 334.31069946 . 00464514 5 30
—92, 02346039 334.31069946 . 00464514 5 36
—92. 02346039 334.31069946 . 00436363 5 42
—91. 31964874 351.90599918 . 00436363 5 48
—91,31964874 351.90599918 . 00436363 5 55
ORBIT PHASE — PLOTBOARD 4

LATITUDE LONGITUDE LATITUDE LONGITUDE
(P.P.) (P.P.) (L. P.) (1.P.) TIME

30.86216545 —69.98544821 11.99999809 —45.00000191 5 30

30.95600700 —69.54545593 11.99999809 —45.00000191 5 36

31.02638817 —69.10557365 11,99999809 —45,00000191 5 42

31.09676933 —68.66569138 11.99999809 —45.00000191 5 48

31.19061089 —68.13783073 11.99999809 —45.00000191 5 55

A — semimajor axis of orbit of spacecraft

R — nominal radius of earth

Time — time is shown in seconds or minutes and seconds since liftoff
Perigee — lowest point of orbit

Eccentricity — eccentricity of orbital ellipse

Long. R. F. — longitude if retrofire in 30 seconds

GTRS — elapsed time to retro setting

GMTLC — GMT of landing (computed)

(r—R) — altitude

3-153

MC 63-4

Apogee — farthest point of orbit

GMTRC — Greenwich Mean Time of retrofire computed

ECTRC — elapsed spacecraft time of retrofire computed

ECTRC—EPO - elapsed spacecraft time of retrofire computed, end present
orbit

GMTRC—EOM — GMTRC at end of mission

GMTRS ~Greenwich Mean Time of retro setting

ICTRC — incremental time of retrofire computed

3.16.3 Method

MXHSPR reads all data from the log tape, separates the high-speed output
from the other data, and writes this on two auxiliary tapes thereby producing
two identical high-speed data tapes. A search for the time of liftoff is made
during the generation of these tapes. If no liftoff signal is found, MXHSPR as-
sumes a liftoff time of zero. (There is no liftoff for log tapes produced by re-
starts or runs based on an orbit r, v.) The program then reads data from one
of the tapes, unpacks the data pertaining to one of the displays, scales this data
accordingly, and writes it on the output tape. When the logical end of the data
tape is reached, the program rewinds the tape and immediately begins proces-
sing data for the next display by using the other data tape. This procedure con-
tinues until the data for each of the displays has been recorded on the output
tape.

MXHSPR uses the Share program SE90U2 to write data on the output tape.

3.16.4 Usage: Operator's Procedures
a) Ready B6 with a log tape.
b) Ready A5, B7, C6 with blank tapes.
¢) Ready card reader with MXHSPR absolute row binary deck.
d) Press CLEAR and LOAD CARDS.

e) Print A5 under program control.

3-154

ENTRY

READ ONE
RECORD
FROM Bé6

)

HAS END

WRITE END OF

OF FILE BEEN YES FILES ON B7
REACHED ON AND Cé.
B6 REWIND TAPES
NO _____4
PLACE ALL SELECT DISPLAY
HIGH SPEED UPDATE THE
DATA SUB DISPLAY SELECTOR
CHANNEL 3- TO READY
IN OUTPUT THE NEXT
BUFFER DISPLAY
\
DOES THIS HAS THE
RECORD CON- NO LAST DISPLAY
TAIN A GMT BEEN
OF LIFTOFF PROCESSED
YES | NO
SELECT B7
STORE OR C6. UPDATE
GMT THE CHANNEL
OF LIFTOFF SELECTOR
IS OUTPUT READ 2
BUFFER RECORDS
FILLED OF DATA
‘ YES
WRITE YES HAS AN
OUTPUT BUFFER END OF FILE
ONTO TAPES BEEN READ
87 AND C6
FIGURE 3-13. MXHSPR PROGRAM FLOW CHART {Sheet 1 of 2)

Q

3-155

>~

MC 63-4

@

READ TWO MORE
RECORDS FROM
SELECTED TAPE

DOES TIME IN\NO
RECORDS EQUAL

GMT OF LlFTOFF/

y YES

SEARCH FOR ODD
AND EVEN FRAMES
TO COMPOSE 1 BLOCK

1

COMPOSE LOG TIME
FOR PRINTING:
HRS MINS SECS

NO CHANGE / TEST FOR \CHANGE

\PHASE CHANGE/

\)

DETERMINE PHASE DETERMINE PHASE
BUT DO NOT AND PRINT
PRINT PHASE TITLE PHASE TITLE
- - |
|

DIFFERENT PROCESSOR

DETERMINE WHICH FOR EACH DISPLAY:

DISPLAY IS TO

BE PROCESSED. DIGITAL DISPLAY

{ STRIP CHART

WALL MAP
UNPACK, CONVERT PLOTBOARD 1
SCALE AND PRINT PLOTBOARD 2
DISPLAY MESSAGES PLOTBOARD 3

PLOTBOARD 4

FIGURE 3-13. MXHSPR PROGRAM FLOW CHART (Sheet 2 of 2)

3-156

3.17 LOG TAPE PRINTER PROGRAM (MXPRLG)

MXPRLG extracts key-selected input and output teletype data from the log
tape for off-line printing in a specified format.

The flow chart for MXPRLG is shown in Figure 3-14.

3.17.1 Input Requirements

Input to MXPRLG are log tapes of Mercury missions, including simulated
runs., As needed, the tapes for a mission are mounted on tape units A6 and B6
as follows: the first reel, third, fifth, etc. use B6; the second reel, fourth,
sixth etc. use A6. MXPRLG requires that the teletype subchannel(s) number
be entered via Entry keys at the beginning of the run. If more than one log tape
is to be processed, the number of tapes must also be entered via the keys.

3.17.2 Output Requirements

The final printed output will be on tape unit A2, with tape units B4 and B5
used as intermediate outputs. Low-speed messages are printed in BCD. The
output tape A2 contains the selected messages in the format listed in Table 3-2.

In the input format example, Table 3-2, data was received through DCC
subchannel 29. Each line following subchannel identification indicates a low-
speed radar message in the format, as defined by the specifications. Each
message contains the station identification code, the type of radar used (Verlort
or AN/FPS-16), the time, range, azimuth, and elevation of the spacecraft
position and whether the data is valid or invalid.

The first line of the output example, Table 3-2, contains the heading words
IDENTIFICATION TERMINAL, and DATA IS TRANSMITTED. Immediately
under the word IDENTIFICATION is a number corresponding to the DCC sub-
channel through which the data passed and was subsequently logged.

In the output format example, the data was transmitted through DCC sub-
channel 11. The left column contains the communications switch letters
(YNYN); the GMT in hours, minutes, and seconds; the terminal station letters;
and the type of transmission (AQ meaning acquisition). Following the type of
transmission is the message content consisting of four "look' angles of time,
range, azimuth and elevation.

3-157

MC 63-4

Table 3-2
GODDARD TELETYPE INPUT
Station Radar
Number Type Validity Hours Minutes Seconds Azimuth Elevation Range
04 2 2 00 14 42 313663 001671 0432621
04 2 2 00 14 48 313622 002100 042124
04 2 2 00 14 54 313621 002413 0407714
04 2 2 00 15 00 313537 002642 0376356
04 2 2 00 15 06 313526 003106 0365024
GODDARD TELETYPE OUTPUT
IDENTIFICATION TERMINAL DATA IS TRANSMITTED
11

YNYN

1148002

CY1

AQ

11 54 31 1555 287.5 .8

11 55 58 873 286.1 9.6

11 57 04 382 280.8 30.4

11 57 58 237 134.1 58.8

114800Z

CY1

3-158

MC 63-4

3.17.3 Method

The numbers of the subchannels and the total number of input tapes must be
entered using the Entry keys. MXPRLG searches the log tapes for these sub-
channels and writes the data on the intermediate tapes B4 and B5. When the
log tapes have been completely read, the B4 and B5 tapes are used as input and
converted to the final printed output. Completed messages are written on A2,

MXPRLG uses the general purpose print program SE90U2 and the teletype
decoder program TYDC.

3.17.4 Usage

a)

b)

Operators Procedure:

1) Ready log tapes on A6 and B6

2) Ready blank tapes on B4 and B5 for intermediate output
3) Ready blank tape on A2 for final output

4) Enter number of log tapes in keys 3 through 8, right-justified, and
all subchannel numbers in keys 10 through 32

5) Press CLEAR, then LOAD TAPE buttons

The machine will come to a halt (7,) and will print the num-
ber of log tapes. If correct, press START to continue. If
incorrect, check console keys and begin again.

6) MXPRLG will now run until all subchannels have been processed

Error Conditions—if an error occurs in using the subroutine SE90U2,

the program transfers to a halt with 764008 in the address. In case of

error in subroutine TYDC, MXPRLG prints on-line the message
ERROR RETURN MESSAGE TOO LONG and continues to print out off-
line that part of the message that has been preserved.

3-159

MC 63-4

GET NUMBER \
OF LOG TAPES

AND SUBCHANNEL TELETYPE 'NO 0

NUMBERS FROM DiggganEEK
CONSOLE KEYS

YES
| i

(PRINT MESSAGE) IYDC

XX INPUT TAPES, CONVERT
IF RIGHT | TELETYPE
MESSAGES TO
— PRESS START - Beb

! i

HALT (7)

WRITE
TO OUTPUT
* TAPE

SETUP
TABLE OF
SUBCHANNELS
TO PROCESS

i (0 @

READ
LOG RECORD

EOF

*NO

WAS READ
FROM A LOG TAPE
OR INTERMEDIATE

TAPE

* INT. TAPE

MOVE
LOG MESSAGE
TO TELETYPE .
DECODE WORK

AREA

;S =<
m
r?lo »n

FIGURE 3-14. MXPRLG PROGRAM FLOW CHART (Sheet 1 of 2)

3-160

MC 63-4

WAS EOF
FROM A LOG TAPE
OR INTERMEDIATE
TAPE

INTERM.
TAPE

YES ANY MORE
LOG TAPES

SWITCH INTE s, ANY MORE
READ INSTRUCTION TAPES SUBCHANNELS
TO NEXT SWITCH READ TO PROCESS
TAPE UNIT INSTRUCTION
: YES
REWIND
THIS TAPE
SWITCH READ
ADDRESS
CHECK

FIRST WORD OF
17-WORD MESSAGE
FOR SUBCHANNEL

GOOD
ONE

NEEDED

MOVE
17-WORD MESSAGE
TO ODD OR EVEN

BLOCK

!

WRITE
1S EITHER T0 ODD
ObD OR EVEN |NT%§MEEVDE|2TE
BLOCK FULL MED
ANY MORE
17-WORD 9
MESSAGES 0

YES o

FIGURE 3.14. MXPRLG PROGRAM FLOW CHART (Skeet 2 of 2)

3~161

3.18 LOG TAPE PLOTTING PROGRAM (MXHSPL)

MXHSPL displays on the Goddard plotboard the data from the log tape used
during a previous Mercury Programming System run to drive plotboards 1
through 4 and the wall map at the MCC.

The flow chart for the MXHSPL program is shown in Figure 3-15.

3.18.1 Input Requirements

The only input to MXHSPL is the log tape of a Mercury mission—simulated
or unsimulated—on tape unit B6. (The log tape is described in subsection 5.1.1.)
The plotboard number is entered in the console keys (the wall map is entered
as 5).

3.18.2 Output Requirements

A plot is made for each flight phase on the X-Y plotter of those parts of the
high-speed output messages sent over DCC subchannel 3 which refer to Cape
plotboards or the wall map.

As each point is plotted, an on-line print indicates plotboard number and
flight phase. After a complete phase has been plotted, the program stops and
prints on-line, END OF ——-—==eee-- PHASE. CHANGE PAPER. HIT START.

3.18.3 Method

MXHSPL searches the log tape for high-speed output messages transmitted
on subchannel 3 of the Data Communications Channel. When a complete mes-
sage of 408 bits is found, the DCC is enabled and the bits referring to the dis-
play designated by the number in the console keys are packed in an output block
to be sent to the DCC. A control word, which has a minus sign indicating how
many arms of the plotter and how many pens per arm are to be used, is also
packed in the DCC output block.

The message is transmitted through DCC subchannel 4 and the DCC is dis-
abled. The remaining messages are located and processed until a phase change
is found. The program then halts until the computer operator presses START.
The program then processes the data for the next phase.

MXHSPL incorporates the Share program SE9OU2 as an internal subroutine
for printing.

3~163

MC 63-4

3.18.4 TUsage

a)

b)

3-164

Operator's Procedures:

1)
2)
3)
1)

o)

6)

7)

Ready the plotter and standard SOS system tapes
Ready B6 with the log tape

Ready the on-line printer

Ready the card reader with the MXHSPL deck

Enter the plotboard number in the console keys (enter wall map as
%)

Press CLEAR and LOAD TAPE

Program stops after each flight phase is plotted. To continue,
press START after changing plotboard paper

Error Conditions—an error return from the subroutine SE9OU2 results
in a program halt.

DEBEG

READ OME RECORD
FROM B6

i

INITIALIZE

'

READ ONE RECORD
FROM Bé6

END-OF-FILE READ

DETES 'NO

YES

SAVE
SUBCHANNEL
NUMBER AND CODE

DEPHA i

STORE PREFIX IN:
WORD 5
OF THIS GROUP

DESC [}

DEGRP :
SUBCHANNEL
CONSOLE

(=)

DEFTT i

MC 63-4

1ST TIME THROUGH PO

J

YES

r‘

DEN \

STORE PHASE N
IN PHASE N - 1

!

STORE 1 IN DEFII

(AS PHASE CHANGED

} YES

PRINT :
"“*END OF_PHASE"’

!

HALT -
TRANSFER WHEN
START PRESSED

}]
DEL| !
STORE MESSAGE
DEWC i
TEST FOR ‘\\YES
END-OF-MESSAGE/
NO
INITIALIZE
MESSAGE BLOCK
Z ©

FIGURE 3-15. MXHSPL PROGRAM FLOW CHART (Skeet 1 of 2)

3-165

MC 63-4

1T \No

TIME
THROUGH
perTe | YES
SET
DECT = 1 ENABLE
ENABLE WAIT FOR TRAP
DETPB
STORE BITS FOR
SELECTED
PLOTBOARD N
DEGTS . |
DESSM ¥
IS THE LAST NO
SET 6TH GROUP OF TEN
WORD MINUS
R
! MOVE RECORD 2
TO RECORD 1 |
TRANSMIT TO DCC
! UPDATE
! READ IN A
NEW RECORD
DISABLE
DEPR Y : \NO
PRINT PHASE AND END-OF-FILE READ -
PLOTBOARD
NUMBER ' YES
REWIND TAPES AND
HAL T-TRANSFER
ON START
[T

FIGURE 3.15. MXHSPL PROGRAM FLOW CHART (Sheet 2 of 2)

3-166

MC 63-4

SECTION 4
SUPPORTING PROGRAMS

Mercury System supporting programs perform all functions necessary for
object program execution that cannot be performed during the mission. Basi-
cally, supporting programs produce and debug Mercury system tapes. Since they
are not part of the real-time tracking system, they are used either before or
after each real-time operation.

Message and station characteristics tapes are produced by the MXWMOT,
UOSTCH, and UOSTUP programs; the B4 utility tape, by the WRTB4T and
HOMER programs. This utility tape contains the writer, loader, and dump
programs, An input tape for the SOS compiler is prepared by MXMRGE.

SOS output is handled by writer and loader programs MXSTWI, MXDEFN,
MXLOAD, and SETORG which produce the absolute Mercury system tapes
and load them into the machine.

The MTTEST transfer test processor serves as a debugging aid, and is
generally run in simulated real-time.

A symbolic dump of core storage is accommodated with the programs
SGENDX, ISODMP, and CORING used in conjunction with SOS,

MC 63-4

4.1 MONITOR MERGE PROGRAM (MXMRGE)

In normal SOS, a compiled squoze deck becomes a job deck with the ad-
dition of three or more symbolic (Hollerith coded) control cards—the first card
added is always a JOB card, and the last, a PAUSE card. This job deck may
be entered into the computer for execution indirectly, via tape, or directly,
via the on-line card reader. Further modifications in the program can be
made with symbolic cards in combination with the original squoze deck.

The squoze deck of a complex system may become too large to handle con-
veniently. For this reason the squoze output from the Mercury SOS compilation
was put on tape rather than cards. With MXMRGE, the symbolic cards are
merged into this '"squoze deck on tape' to produce a job tape as output. (The
job tape is, in fact, identical to the tape produced when a job deck—squoze
deck plus symbolic control—is written on tape off-line to be used as input to
the computer.)

A general flow chart and a detailed flow chart for the MXMRGE program
are shown in Figures 4-1 and 4-2.

4.1.1 Input Requirements
Input to MXMRGE consists of:

a) The squoze deck written in column binary form on tape B8. This
squoze tape must contain at least one record preceding and one rec-
ord following a blank record (a minimum total of three records) and
an end-of-file mark following the last record.

b) Symbolic control cards read into the computer either directly, from
the on-line reader, or indirectly, from tape A5.

4.1.2 Output Requirements

The output from this program consists of one or more merged jobs written
on tape A3. For each job completed, the computer prints out the number of
squoze records read from B8 and the number of modification cards (MOD to
ENDMOD, exclusive) merged, with the message: GOOD MORNING. RESET
ENTRY KEYS FOR FIRST JOB. THEN PRESS START.

4.1.3 Method

a) Symbolic cards are read by the RCD subroutine (internal to MXMRGE)
which converts the cards to BCD and stores them in 12 consecutive

MC 63-4

b)

d)

core storage cells. The proper leading address is placed in the
thirteenth and fourteenth cells; the 14-cell block is written on tape
A3 in BCD.

With the exception of the blank record, the records of the squoze

tape are read in one by one; each record is placed in consecutive

cells of a 26-cell block, the unused cells set to zero. The proper
leading address is placed in the twenty-seventh and twenty-eighth
cells, and the 28-cell block is written on tape A3 in BCD.

The blank record of the squoze tape is converted to BCD by placing

Hollerith blanks in 12 consecutive core locations; the proper leading
address is placed in the thirteenth and fourteenth cells, and the 14-

cell block is written on tape A3 in BCD.

When a PAUSE card is sensed by the card reader (or an end-of-file
mark if tape A5 is used for the symbolic control card), an end-of-file
mark is written on tape A3.

4.1.4 Usage

4-4

a)

Operator Procedures—usually a MXMRGE run immediately precedes
an SOS run to process the merged jobs. Both phases require the
standard SOS tapes. The operator must:

1) Ready the following tapes:

For MXMRGE After MXMRGE, for processing*
Al SOS tape SOS tape
A2 (Not used) BCD output
A3 Pool tape; used by Job tape from MXMRGE

MXMRGE to write
the job tape

B1 Pool tape Pool tape

B2 Pool tape Pool tape

B8 Mercury System (Not used)
tape

*Other tapes may be needed by the program being processed.

MC 63-4

2) Ready the card reader with:

WDBL2
MXMRGE
Job Decks

Two cards
40 cards
Not needed if they are being read from tape A5.

3) Set console entry keys S, 1, 2, 3, 4and 5 as follows:

ENK-S up
ENK-S down

ENK-1 up
ENK-1 down

ENK-2 up
ENK-2 down

ENK-3 up
ENK-3 down

Control cards read from AS5.
Control cards read from card reader.

B8 is not rewound after each input job.
B8 is rewound after each input job.

JOB card appears on squoze input.
No JOB card on squoze input, *

A5 is not rewound at end of MXMRGE.
A5 is rewound at end of MXMRGE.

(Note: if ENK-S is up, ENK-3 has no effect and MXMRGE re-
winds A5 before and after all merging.)

ENK-4 up
ENK-4 down

ENK-5 down

ENK-5 up

One end-of-file mark between each squoze deck. *
Two end-of-file marks between each squoze deck.

Job deck and squoze deck with same characters
in first card, columns 16 and 17, are merged.
No job select; job deck merged with next squoze
on tape.

4) Ready the on-line printer; press CLEAR and LOAD CARDS.

5) Six lines are normally printed for each job, one line at the start
of the job and five lines at the end of the job:

Line 1: JOB card

Line 2: ONE JOB HAS BEEN WRITTEN ON A3. THE SQUOZE
AND MOD COUNTS WILL FOLLOW.

Line 3: THE FOLLOWING 36 BIT BIN. NO. IS THE NO. OF THE
SQUOZE RECORDS READ FROM BS.

*Applies to an obsolete version of SOS. ENK-2 and ENK-4 should always be up.

4-5

MC 63-4

Line 4: (36-bit number)

Line 5: THE FOLLOWING 36 BIT BIN. NO. IS THE NO. OF
MOD CARDS READ MOD TO ENDMOD.

Line 6: (36-bit number)

b) Error Conditions—there are six possible error stops; each prints a
specific line on the printer:

1) REDUNDANCY ON CH. A. PRESS START IF COMPLETION OF
MXMRGE DESIRED.

2) REDUNDANCY ON CH. B. PRESS START IF COMPLETION OF
MXMRGE DESIRED.

3) REDUNDANCY ON CH. A. MXMRGE CANNOT COMPLETE
MERGE.

4) ILLEGAL HOLLERITH CHARACTER DETECTED BY RCD SUB-
ROUTINE.

5) FIRST CARD FOR JOB NOT JOB CARD—ERROR IN HOLLERITH
CONTROL DECK.

6) FALSE END-OF-FILE. INCORRECT SETUP OF HOLLERITH
CONTROL DECK.

The first two errors can be bypassed and MXMRGE completed. The
last four errors cannot be bypassed. If the error occurred on the
first job, correct the condition, if possible, and start over. If the
error occurred after the first job, either rerun all the jobs or remove
A3 and start over with the uncompleted jobs.

c) Example of MXMRGE Usage—OUTPUT is the result of merging IN-
PUT 1 and INPUT 2 and is written on A3.

INPUT 1 INPUT 2 OUTPUT

List Job Deck

Squoze Tape JOB JOB (BCD)
LS LS (BCD)
Blank card Squoze deck preceding blank of squoze (CB)
PAUSE Blank card of squoze deck (BCD)

Squoze deck following blank of squoze (CB)
Blank card (BCD)

PAUSE (BCD)

End-of-file mark

4-6

MC 63-4

INPUT 1 INPUT 2 OUTPUT
Execution Job Deck
Squoze Tape JOB JOB (BCD)
LG
MOD Squoze deck preceding blank of squoze (CB)
*Modification cards MOD (BCD)
ENDMOD
Blank card Modification cards (BCD)—present only if
placed in card reader or on A5.
*Data sentence deck ENDMOD (BCD)
GO Blank of squoze deck (BCD)
PAUSE Squoze deck following blank of squoze (CB)
Blank card (BCD)
Data sentence decks (BCD)—present only
if placed in card reader or on A5
GO (BCD)
PAUSE (BCD)
End-of-file mark
List Squoze Deck
Squoze Tape JOB JOB (BCD)
LG LG (BCD)
MOD Squoze deck preceding blank of squoze
*Modification cards MOD (BCD)
ENDMOD Modification cards (BCD)—present if placed
in card reader or on A5
Blank card
LIST ENDMOD (BCD)
Blank card Blank of squoze (BCD)
PAUSE Squoze deck following blank of squoze (CB)
Blank card (BCD)
LIST (BCD)
Blank card (BCD)
PAUSE (BCD)
End-of-file mark
Punch New Squoze Deck
Squoze Tape JOB JOB (BCD)
PS PS (BCD)
MOD Squoze deck preceding blank of squoze (CB)

*if needed

MC 63-4

INPUT 1 INPUT 2 OUTPUT

Punch New Squoze Deck—Continued

*Modification cards MOD (BCD)
ENDMOD Modification cards (BCD)
Blank card ENDMOD (BCD)
PAUSE Blank for squoze (BCD)

Squoze deck following blank of squoze (CB)
Blank card (BCD)

PAUSE (BCD)

End-of-file mark

Punch Absolute Binary

Squoze Tape JOB JOB (BCD)
PA PA (BCD)
MOD Squoze deck preceding blank of squoze (CB)
*Modification cards MOD (BCD)
ENDMOD
Blank card Modification cards (BCD)—present if

placed in card reader or on A5
PAUSE
ENDMOD (BCD)
Blank of squoze deck (BCD)
Squoze deck following blank of squoze (CB)
Blank card (BCD)
PAUSE (BCD)
End-of-file mark

*if needed

d) A FIELD card may be placed at the beginning of a MXMERGE
deck. The address of the FIELD card specifies that all mods with alter
numbers lying in the range of the field will be automatically inserted in
each mod packet. If the job is loaded on-line, a blank A5 is required.

Column 72 of the job card must contain the job number (1, 2, ..., 9).
Example:
Example: FIELD 1,500 Column 72
JOB ONE 1
LG
MOD
ALTER 315,317
CLA SMTNG
ENDMOD
GO
JOB TWO 2

4-8

e)

FIELD

LG

MOD
ALTER
ADD
ALTER
STL
ENDMOD
GO
PAUSE

This MXMRGE deck effectively becomes:

JOB
LG
MOD
ALTER
CLA
ALTER
STL
ENDMOD
GO
JOB
LG
MOD
ALTER
CLA
ALTER
STL
ALTER
ADD
ENDMOD
GO
PAUSE

1,500

600
OTHR
15
LSWR

ONE

315,317
SMTNG
15
LSWR

TWO

315, 317
SMTNG
15
LSWR
600
OTHR

Column 72

MC 63-4

A PAUSE card is no longer required between successive jobs.

4-9

MC 63-4

ENTRY

R1

READ IN FIRST
CARD FROM CARD
READER (OR AS) Wi TH
RCD SUBROUTINE

WAS RETURN
END-OF-FILE

AN EOF, ERROR i

RETURN
OR NORMAL RETURN RALT
REWIND SPECIFIED FOR FIELD TRANSFER
TAPES. TRANS- RUN, OUTPUT CONTROL WHEN
FER CONTROL TO COMMON MODS. OPERATOR PRESSES
s0s WRITE *JOB" ON START BUTTON

OUTPUT TAPE A3
AND READ THE
NEXT CARD WITH
RCD SUBROUTIN

M1

IS THE
SECOND CARD

AN “Ls" (LisT] YES
SQUOZE) CARD?
C 1
WRITE THE READ NEXT CARD WRITE THE “'LS§"
gfgg’;%kég{ WITH RCD ON THE OUTPUT
OUTPUT TAPE A3 LG TAPE A3
THIS MERGE JOB
IS COMPL ETED.
S THIS CHECK TO SEE
IF M
CARD A *MOD" WRITE PREFACE REMAIN
(MODIFICATION) SQUOZE CARDS
CARD? ON OUTPUT *
’ TAPE A3
WRITE REMAINDER
OF CARD INPUT
FROM CARD READER
WRITE THE (OR A5) ON OUTPUT
SECOND LAST TAPE A3
CARD READ ON
OUTPUT TAPE A3
WRITE REMAINDER
] OF SQUOZE
INPUT FROM B8
WRITE PREFACE ON OUTPUT
SQUOZE CARDS TAPE A3

FROM TAPE B8
ON OUTF;UT TAPE
3

B!

WRITE MODIFICATION
FOR FIELD RUN, SAVE CARDS ("M??”
TO “'ENDMOD") ON
COMMON MODS IN OUTPUT TAPE A3
MEMORY.

FIGURE 4-1. MXMRGE GENERAL FLOW DIAGRAM

4-10

REWIND
TAPES
A3 & B8

IS ENTRY
KEY §

YES

S 1
NO REWIND
TAPE
AS
R1
SET
INITIAL
CONDITIONS

CARD
LOADED

READ
1ST CARD WITH
RCD SUBROUTINE

EOF, ERROR OR
NORMAL

L.A. IS READ ‘"LEADING ADDRESS"
BCD : CB IS READ ''BINARY-CODED
DECIMAL CARD FOLLOWED BY
COLUMN BINARY CARD"

THE LEADING ADDRESS IN EACH
TAPE RECORD SUPPLIES THE READ-
SELECT MODE FOR 505 WHEN
A SQUOZE DECK 1S UNDER
SOS CONTROL

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 1 of 6)

ERROR RETURN

RETURN FROM
RCD SUBROUTINE

NORMAL RETURN

MC 63-4

1S ENTRY
KEY 2 YES 3
PRINT OUT
ON-LINE THE
NO *JOB CARD"
RECORD FROM B8
IS THE IS THE NO, ERROR
CARD READ A CARD A
“JOB" CARD? FIELD CARD
PRINT MESSAGE 2
YES Tes ON-LINE:
“FIRST CARD FOR
JOB NOT JoB
PUT COMMON CARD-ERROR
MODS IN IN HOLLERITH
MEMORY CONTROL DECK’*
.__—_—l PROGRAM HAL TS

OPERATOR
PRESSES START
BUTTON

4-11

MC 63-4

4-12

M1 R2
SET L.A. TO SET: CNO =3
BCD:8CD a=§
SARD oN TAPE s
D CNO 1S CARD
IN BCD NUMBER
1
M2 { M3 [
READ 2ND CARD READ CARD#
WITH CNO WITH
RCD SUBROUTINE RCD SUBROUTINE

RETURN

NORMAL
RETURN

IS 2ND CARD
AN *°LS'" (LIST
SQUOZE) CARD

EOF, EOF,
ERROR RETURN |ERRORRETURN{ pppoR RETURN
OR NORMAL OR NORMAL

RETURN

NORMAL
RETURN

1S CARD # CNO \
A “MOD"* NO

SET
CNO TO
CNO +1

}

SET L.A. OF
CARD # (CNO-1})
TO BCD:BCD
WRITE CARD #
{CNO-1) ON TAPE
iN BCD

1]

CARD
YES
SET L.A. OF LS -
TO BCD:BCD T L.A, OF
WRITE LS ON CARD (SNOD)
TAPE IN BCD :
WRITE CARD
{ (CNO-1) ON
TAPE IN BCD
SET
a= a‘
B=8
Ms
READ 15T

RECORD FROM
SQUOZE TAPE

1

STEP
B8
COUNTER

20%

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 2 of 6)

MC 63-4

1S THIS A WRITE OUT
COMMON
Q @ FIELD RUN MODS.

R3
M8
SET L.A. OF WRITE MOD
“'MOD"" CARD CARD On
TO BCD:BCD TAPE TN
BCD
M9 [}
: READ THE
Mé MODIFICATION
CARD WITH
READ ANOTHER BCD SUBROUTINE
RECORD FROM
SQUOZE TAPE 1
] STEP
o CH. A
ITE
STEP NEXT-TO-LAST COUNTER
? e
FROM SQUOZE
COUNTER 4 SQU
SET L.A. OF *“MOD*’ CARD
NEXT-TO-LAST BECOMES LAST
RECORD READ CARD READ
FROM SQUOZE
TO CB:CB
15 THE
RECORD
A BLANK

EOF, NORMAL,
OR ERROR
RETURN FROM
RCD SUBROUTINE

NORMAL ¥ RETURN

RECORD ERROR

RETURN

EOF

SET L.A. OF
NEXT-TO-LAST

RECORD READ SET L.A. OF
FROM SQUOZE MODIFICATION
TAPE TO CB:BCD CARD TO
' BCD:BCD
WRITE NEXT-TO-

LAST RECORD

READ FROM s T
SQUOZE ON
TAPE BINARY ,CARD AN
ENDMOD

1

PUT BCD CONFIG-
URATION IN BLANK

CARD

RECORD. SET L.A. “ "
WRITE “E
OF BLANK RECORD TgN Tmoo
TO BCD:CB IN BCD
3c !
cJoJo o
READ 1ST RECORD
AFTER BLANK FROM
SQUOZE TAPE;
WRITE BLANK RE-
e e CORD FROM SQUOZE
- N BCD

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 3 of 6)

4-13

MC 63-4

4-14

@

READ ANOTHER
RECORD FROM
SQUOZE TAPE

M11

SET L.A. OF
NEXT-TO-LAST
RECORD READ

FROM SQUOZE TAPE

TOCB : CB

END-OF-FILE
ON
SQUOZE TAPE?

SET L.A. OF LAST
RECORD READ
FROM SQUOZE
TOCB : BCD

M13

READ NEXT
CARD WITH
RCD SUBROUTINE

EOF, NORMAL,
ERROR | OR ERROR RETURN | EOF
FROM RCD
SUBROUTINE

SET L.A. OF
MODIFICATION
CARD READ TO

BCD : BCD

IS CARD
READ A
““PAUSE'" CARD?

WRITE CARD
ON TAPE

\

WRITE ‘*PAUSE"’
CARD ON
TAPE IN B8CD

F=

PRINT OUT ON-LINE
THE B8 COUNT
AND THE
MOD! FICATION COUNT

ENTRY KEY 1
upP

REWIND
B8

1S
ENTRY KEY 4
upP

YES

SKIP END-OF-
FILE ON BS.

TURN OFF
END-OF-FILE
INDICATOR

1A

ISI1T A

NO

IN BCD

]

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 4 of 6)

RS

WRITE END-OF-
FILE ON A3
REWIND A3

R
CHANNEL A

ON CHANNEL A
OR CHANNEL B

EDUNDANCY CHANNEL 8

NO

PRINT MESSAGE 4
ON-LINE:
‘'REDUNDANCY ON
CH.A. PRESS
START IF
COMPLETION OF
MXMRGE DESIRED.”

PROGRAM HALTS

PRINT MESSAGE 5
ON-LINE:
““REDUNDANCY ON
CH.B. PRESS
START IF

COMPLETION OF
MXMRGE DESIRED’’

PRCGRAM HALTS

OPERATOR
PRESSES START
BUTTON

sooe

eeen

OPERATOR
PRESSES START
BUTTON

R7

REWIND SOS TAPES:
Al, A2, A3, B1, B2
REWIND MERGE
TAPE: 88

1S
ENTRY KEY S
UP

REWIND
A5

1S

Y

PRINT MESSAGE 7
ON-LINE:
“‘RESET ENTRY
KEYS FOR FIRST
JOB. THEN
PRESS START"*

PROGRAM HALTS

SIMULATE
““LOAD TAPE"
INSTRUCTIONS TO
GIVE CONTROL
TO SOS

ENTRY KEY 3
upP

REWIND
A5

L

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Skeet 5 of 6)

MC 634

OPERATOR
PRESSES START
BUTTON

4-15

MC 63-4

4-16

IS

NO

ENTRY KEY S
uprP

YES

)

PRINT MESSAGE 6
ON-LINE:
*‘REDUNDANCY ON
CH.A. MXMRGE
CANNOT COMPLETE
MERGE"’

PROGRAM HALTS

PRINT MESSAGE 1
ON-LINE:
“ILLEGAL HOLLERITH
CHARACTER
DETECTED BY
RCD SUBROUTINE"

PROGRAM HALTS

OPERATOR
eeee| PRESSES START
BUTTON

ERROR RETURN
FROM RCD SUBROUTINE

6B

PRINT MESSAGE 3
ON-LINE:
k*FALSE END-OF-FILE
INCORRECT SET UP
OF HOLLERITH
CONTROL DECK"'

PROGRAM HALTS

OPERATOR
PRESSES START |eeece
BUTTON

END-OF-FILE RETURN
FROM RCD SUBROUTINE

FIGURE 4.2. MXMRGE PROGRAM FLOW CHART (Sheet 6 of 6)

MC 63-4

4.2 MERCURY SYSTEM TAPE WRITER PROGRAM (MXSTW1)

MXSTW1 writes in absolute binary the real-time Mercury operational pro-
gramming system onto one, two, or three self-loading system tape(s).

The flow chart for MXSTW1 and its subroutines RDWRT, RDUNCY, and
CMPAR is shown in Figure 4-3.

4.2.1 Input Requirements

Input to MXSTW1 consists of intermediate tapes Bl and B3, produced by an
SOS compilation, which contains the product of a squoze tape and mod deck
merging operation. Also, on entering MXSTW1, the AC will contain the origin
and length of BCOMB, a table of symbol definitions. This table lists the values
to be substituted for symbols used in writer and loader instructions which ref-
erence system locations. The values are contained in the address portion of
table entries.

4.2.2 Output Requirements

Output from MXSTW1 is the absolute binary, self-loading Mercury oper-
ational system tape on A6.

4.2.3 Method

SOS reads in the A3 job tape and writes the system mediary input tape
(SYSMIT) on B1l. B1 will contain Job 1 in binary and the dictionary of program
symbols. SOS then loads SYSMIT from Bl into memory and transfers control
(TCD) to SETORG. SETORG modifies SOS monitor communication cells to
permit communication between Jobs 1 and 2; then transfers control to MXSTW1.
The second time through MXSTW1, SOS writes SYSMIT for Job 2 on the B3
tape and the process cited for Job 1 is repeated for Job 2.

MXSTWI first checks the Entry keys to determine the number of system
tapes to be written and then tests for the job number—JOB 1 or JOB 2. JOB 1
is loaded the first time through, and MXSTW1 writes the self-loading file
(MXLOAD) as the first file and the rest of the files from B1 on the first part
of the A6 tape. MXSTW1 then writes the communication record (QDEFN) to be
read when JOB 2 is written. This record contains the job number, the number
of files written on the system tape(s) in JOB 1, and redundancies which occurred
in JOB 1.

After all files from JOB 1 are written, MXSTW1 changes the SYSMIT tape
from B1 to B3 and transfers control to SOS. SOS then writes SYSMIT for JOB 2

4-17

MC 63-4

on B3, loads it into memory, and transfers to MXDEFN. The procedure is the
same as for JOB 1, except MXLOAD is not written as the first file on JOB 2,
Instead, the communication record is read. After the information is obtained
from the communication record, all files on JOB 2 are written. This completes
the writing of the A6 tape, and the writer duplicates SYSMIT B1 and B3 to re-
tain the dictionary and other information for dumps. MXSTWI1 then uses a
subroutine which compares the A6, B8, and C6 tapes (if all three are used).
After the tapes are compared, A6 is dialed to Al, the tapes are rewound, and
the LOAD TAPE button is pressed.

4.2.4 Usage
Operator's Procedures:
a) Ready the standard SOS system tapes, using A3 as the input tape.
b) Ready the on-line printer.
¢) Press CLEAR and LOAD TAPE buttons.

d) Enter in the keys the number of the system tapes to be written.

e) Ready the following tapes depending on the number of system tapes
to be written:

1) A6—if one tape is desired
2) A6 and B8—if two tapes are desired
3) A6, B8, and C6—if three tapes are desired

f) After each SYSMIT is loaded, control is transferred to MXDEFN
and then to MXSTW1. The program halts after printing an on-line
message to indicate the control transfer.

g) Press START to produce the self-loading Mercury System tape(s).

h) Any tape redundancies occurring during the writing of the system
tape(s) are indicated by an on-line message which indicates where
the redundancy occurred and what action to take to continue
writing the tape(s).

i) MXSTW1 provides an on-line printout stating that the Mercury
System tape(s) is successfully written, and if more than one is
written, START should be pressed to compare the tapes.

4-18

START

START

EXAMINE ENTRY
KEYS TO DETERMINE
THE NUMBER OF
TAPES TO WRITE;
STORE NUMBER
IN NUTA P

TEST LOCATION
JBIND TO DETERMINE £

MC 63-4

_PICK UP ““FILE"
FROM COMMUNICATION
RECORD STD IN

JOB NUMBER
JBIND = 0 FOR JOB 1
BIND £ 0 FOR JOB 2

STRT1
REWIND MXRASE
AND ALL TAPES
TO BE WRITTEN
TSX SETAD,4
PZE REWSY

SPACE j
SPACE 4 FILES

BACKSPACE RECORD

ON MXRASE

MXRASE = B1 FORJOB 1
MXRASE = B3 FOR JOB 2

COUNT FILES ON
MXRASE; COUNT IN
IR4. COUNT RECORDS
FOR EACH RECORD
COUNT IN X1

STORE RECORD COUNT
FOR EACH FILE
STARTING AT
LOCATION TABLE

!

SUBTRACT CONTENTS
OF CODSY FROM
FILE COUNT. STORE
IN LOCATION BSFCT

]
)NO

TEST J2IND FOR
JOB NUMBER
JBIND = 0
WRITE ON TAPE(S) 3-WORD

y YEs
SELF.LOADER, CALL MXLOAD.
DELAY UNTIL ALL
CHANNELS DISCONNECT
TSX RDWRT, 4
PZE LCH,1,1

ON ALL
ABSOLUTE TAPES

HIND (JOB NO.) STA
IN CODSY (NO. OF
FILES FROM PREVIOUS JOB)

{

ADD 1 TO FILE +1
AND STORE IN LOC.
RAFFN AND SYFFN
TO INITIALIZE FILE
COUNT STORE JBIND

!

NO ﬂ)ID PREVIOUS JOB

i

PUT C(IR4) = FILE
COUNT IN DECR.
OF TEST
15 IR1

TEST
IS C(IR1) > TOTAL
NUMBER OF FILES

*NO

\YES

ADD 1 TO C(CODSV)
WHICH CONTAINS
TOTAL FILE COUNT
FOR BOTH JOBS

PUT C(IR1) IN ADDRESS
OF AC (TABLE
ENTRY CORRESPONDING
TO CURRENT FILE)
C(AC) > “FILE"
P(AC) > IR2

©

|

HAVE REDUNDANCIES

YES
NW

TEST LOC. FILE +1
FOR REDUNDANCY
NO. AS FOLLOWS:
=1 A AND B = 4
2 AANDC=S5
3 C=6

(L]

(')W)

RDUNW
TO SET
REDUNDANCY
INDICATIONS FOR
PROPER CHANNELS

|

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 1 of 9)

4-19

MC 63-4

MSWECC
TO PRODUCE
HAMMING CODES
TSX MSWECC, 4
FILE,,2

{

WRITE CONTROL WORD
(4 WORDS WITH HAMMING
CODES ON TAPE)
TSX RDWRT,4
PZE CODER,,1

SPACE OVER
EOF ON
MXRASE

1

no /"

kLOC POSMT ZERO)

YES ‘

BSFB MXRASE TO
POSITION MXRASE
AT REQUIRED FILE
FOR JOB 1-AFTER
LOADER AND WRITER
JOB 2 - AFTER COMMON

|

STL POSMT sO
MXRASE ISNOT
BSFB AFTER FIRST
TIME

-

ERR2

PRINT: “TAPE
CHECK READING
MXRASE.” PRESS

START TO CONTINUE

1

HALT

1
READ PAST FIRST
RECORD OF FILE ON
MXRASE. DELAY UNTIL
CHANNEL B DISCONNECTS

RTBB
READ RECORD UP TO
264 WORDS FROM
MXRASE INTO BLOCK
BEGINNING WITH “FILE"
DELAY UNTIL CHANNEL B

DISCONNECTS

REDUNDANCY ON
CHANNEL B

NO‘

MSWECC
(PRODUCES
HAMMING
CODE S)

WRITE 264-WORD
RECORD ON TAPES
(A6, B8, C6) FROM BLOCK
BEGINNING WITH “FILE"
TSX RDWRT,4
PZE HCW,, 1

1

STORE “FILE" INTO
HMANN (CONTAINS
RECORD ORGANIZATION
AND LENGTH)

!

LAST RECORD IN
FILE DONE

YES *

WRITE EOF ON
TAPES (A6, B8, C6)
INCREMENT IR]
BY 1~ GO TO “TEST"”

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 2 of 9)

4-20

TEST LOC:
CHAOF — CHAN A
CHAOB - CHAN B
CHAOE — CHAN C
IF LOC ARE £0 A RE-
DUNDANCY OCC.ONCH.

REEOF

INCREMENT LOC.
HIND BY ONE. HIND
CONTAIN JOB NO.

!

STORE HNUM
(NO. OF JOB2) IN
LOCATION HT

IS HIND = HT

NXJOB NO

USE LOC. HMANN TO
CALC.SYSORG ADDR,
TOBE USED FOR JOB2

MC 63-4

MSWECC
(HAMMING CODES)

CONTROL WORD
INDICATES

THIS IS LAST

PROGRAM FILE

!

T

AS LAST FILE ON ABS.

WRITE QDEFN TABLE

STORE CONTROL

!

REWIND MXRASE (B3)

FILE AETBRG €0 AND TAPE(S) BEFORE SOS. WORD IN LOC.
TSX RDWRT, 4 PZE FILE+1
‘ VCTBL, 1,1
STORE C(CODSV) IN l“'—'—
&Dc%ads(\)/'): "NFCIJLE L ES
=NO.FIL
REWIND ABSOLUTE MSWRECC
WRITTEN TO DA
TE TAPE(S) (PRODUCES

HAMMING CODES)

STORE C(HIND)
(JOB NO. IN DECRE-
MENT OF “FILE"

WERE THERE
REDUNDANCIES
INJOB 1

!

GET SPECIFIC
REDUNDANCIES AND
STORE CORRECT NO.:
1FORA 4FORA+B
2FORB 5FORA+C
3FORC 6FORB+C

1

STORE CORRECT
NO. IN FILE +1 OF

RECORD
(WRITTEN ON TAPE)

L

MSWECC
(PRODUCES HAM-
MING CODES FOR
COMMUNICTN. REQ

WRITE COMM. RECORDS
TO COMMUNICATE
BETWEEN JOBS
TSX RDWRT, 4
PZE CODER, !

MSWECC
(HAMMING CODES FOR)

QVECK RECORD)

WRITE QDEFN REC,
FOR JOB1 TO BE USED
& UPDATED BY JOB2

TSX RDWRT, 4
PZE VCTBL,,1

!

SPACE ABS. TAPE(S)
TO END OF LAST
FILE (CHECK FORRE-
DUNDANCY) TSX
RDWRT 4, PZEEOE,,0

WRITE CONTROL
RECORD AND EOF
ON TAPES(S)
TSX RDWRT, 4
PZE CODER, 1,1

!

WRITE EOF ON ABS.
TAPES TO CAUSE A
DOUBLE EOF BEFORH

SOS FILES

|]

{

1

DUPLICATE 81
(JOB 1 SYSMIT) ON
END OF

N
ABSOLUTE TAPE

REWIND ALL
ABSOLUTE
TAPES WRITTEN

1

1

CHANGE ADDR. OF
OF SYSMIT TO B3 AT
LOC. RDTBI1 & DUPL.
JOB 2 SYSMIT (B3)
AFTER DUP, OF Bl

PRINT:
“‘MERCURY SYSTEM'
TAPE SUCCESSFULL
WRITTEN’’ PRESS ST,
TO COMP.TPS

1

1

CLEAR
LOC 3019 TO
300010

HALT

L |

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 3 of 9)

MC 63-4

BSR ON SYSTEM
TAPE(S) BEING MADE
POSITION BEFORE QVECK

CLEAR
MEMORY EXCEPT
WRITER

CHANGE TAPE ADDRESS OF
SYSMIT (B1) TO B5 STORE
INSTRUCTIONS IN SOS$ TO

RESTORE SYSORG TO 3000,

AFTER USING
CALCULATED SYSORG

|

IN SOS WHICH
SEARCHES THE A3
FOR THE NEXT
SOS CONTROL CARD
TO LOAD JOB 2

FIGURE 4.3. MXSTW1 PROGRAM FLOW CHART (Sheet 4 of 9)

4-22

WRT

MC 63-4

SAVE IR 1 AND 4
IN LOCATION HAM
AND HAM+ 1

!

PUT PARAMETER IN
AC. STT IN HWEF
STD IN HWORD

WRITE AN
EOF ON
TAPE(S)

BEING

WRITTEN

DID A REDUNDANCY

YES
OCCUR ON THE |

ON CHANNEL A
TAPE(S)

NO

NO YES

ON CHANNEL B

o

LOCHWEF = 0 > NO

!

STORE ADDRESS OF
PARAMETER (LOC 1/0)
IN LOCATION
HRCHA, + 1, + 2

PICK UP
FROM LOC.
XWRTP
PROPER
WRS

PICK UP FROM
LOC XRDTP
PROPER RDS

STORE PROPER SELECT]
(READ OR WRITE)
IN LOC ADDR HSELT

N

SET UP RCH AND
TCO COMMAND IN LOC
HSELT + 1 AND SL
RESPECTIVELY

HSELT f

EXECUTE THE
PROPER READ
OR WRITE
COMMANDS (DELAY)

I

YES

REDUNDANCY
ON

CHANNEL C

H

RESET CELLS I_—

WEF AND HWTRD
(STORE ZEROS)

RESTORE
IR 2 AND 4

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 5 of 9)

4-23

MC 63-4

PRINT:

**“REDUNDANCY ON

CHAN A WILL DIS-

CONTINUE WRITING,
ON CHAN A"

STL LOC CHAOF
TO INDICATE
CHAN A REDUNDANCY

RDUNY

SAVE IR2 AND 4

IN LOC HAMY AND
HAMY +1

!

PUT ARGUMENT
IN (AC) AND
COMPARE HTWD

RDUNC

COMPA

RDUNB |

RE-ORDER TABLE
OF COMMANDS BY
STORING CHAN A
COMMANDS OVER
CHAN B COMMANDS

PREVIOUS
REDUNDANCY
IN CHAN A

() RDUNE

STORE COMMANDS
OF CHAN B OVER
COMMANDS OF CHANA|

YES

CHAN B WILL DIS-
CONTINUE WRITING
ON CHAN B"

RE (AO \
TO HTWD (2)
CHAN (

B ERROR

RE-ORDER TABLE
OF COMMANDS BY

STORING CHAN A

COMMANDS OVER
CHAN C COMMANDS

PRINT:
““REDUNDANCY

ON

CHAN C WILL DIS-

CONTINUE WRI
ON CHAN C'

:I'ING

PREVIOUS ERROR YES

IN CHAN A

NO

HEXIT

SUBTRACT ONE
FROM LOC NUTAP
(NEW NO. OF TAPE(S))

LOC NUTAP=0

HAMY NO

YES PRINT:
‘‘RELOAD A3 AND

TRY AGAIN"

RESTORE IR2AND 4

&

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 6 of 9)

4-24

LOAD IR1 WITH
NO. OF FILES

TO COMPARE

!

SET UP PROPER
READ COMMANDS
TO PREPARE TAPES
WHICH WERE
COMPLETELY
WRITTEN (SETAD)

MC 63-4

YES /' REDUCE IR1 BY

1
AREAD Y

RD A RECORD
FROM EACH TAPE
BEING COMPARED INTO
FOLLOWING BUFFER:
MXSYST - HBUFA
MXSYSB - HBUFB
MXSYSC - HBUFC

NO

@XSYST BEING COMP’D,
COMBC

STL KA TO SET
TRA TO HERE
STORE (TRABC)
IN LOC. MCONT + 2

i YES
NO
MXSYSB BEING COM@
y YES
NO
88 MXSYSC BEING COMP'D)
‘ YES
‘ SCHA IN LOC CTWRD
AND FIND NO. OF

WORDS IN RECORD

PUT NO. OF WORDS
IN RECORD IN IR4
(COMPLEMENTED)

NO DO MXSYSB

SCHB IN LOC CTWAD
AND LOAD NUMBER
OF WORDS IN
RECORD IN iR4

AND MXSYSC
COMPARE

HDATA fus-

No MXSYST COMPARES

TO MXSYSB

PRINT: YES
*“ MXSYST (A6) FAILS
TO COMPARE WITH

MXSYST (B8)”)

NO HALT
MXSYST COMPARES
TO MXSYSC
PRINT: YES
e
*MXSYST (A6) @ ¥ HCoNT [\

FAILS TO COMPARE
WITH MXSYST (B8)"

ALL WORDS BEEN
COMPARED NO

PRINT:
"“THE TAPES BEING
COMPARED DO NOT
COMPARE""

1; MORE FILES

YES
ERROR IN COMPARING]

PRINT:
“COMPARISON
SUCCESSFUL"

HALT

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 7 of 9)

4-25

MC 63-4

SCHA IN LOC
CTWR AND GET
THE NO. OF WORDS
PER RECORD IN IR4

\

MXSYST COMPARES
WITH MXSYSB

NO

PRINT:
‘“THE TAPES BEING
COMPARED DO
NOT COMPARE"’

HALT

YES e

COMAC

STL KA TO SET
TRA TO HERE
STORE (TRA AC)
IN LOC HCONT + 2

COMAB \

STL KA TO SET
TRA TO HERE FROM
KA (EXCEPT FIRST

TIME) STORE (TRAAB)

IN LOC HCONT + 2

)

SCHA IN LOC
CTWRD AND GET
IN IR4 THE NO.

OF WORDS/RECORD

)

MXSYST AND
MXSYSB COMPARE

NO

PRINT:
““THE TAPES BEING
COMPARED DO NOT
COMPARE"’

HALT

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 8 of 9)

4-26

INPUT AND QUTPUT TAPE FORMAT FOR MXSTW1

END-OF-TAPE END-OF-TAPE
P FILE FILE
MERCURY
PHASE N ’:iRCURY
JOB 1 ASE N
JoB 2

W
)

—
)

MERCURY MERCURY
PHASE 1 PHASE 1
OF JOB 1 f JoB 2
FILE 4 FILE 4
(MXSTW1) (MXSTW1)
DUPLICATE
DICTIONARY 408 2 DICTIONARY
FILE 3 (STSNOT) FILE 3
(s0S) (508)
DUPLICATE
OF JOB 1
FILE 2 (STSNOT) FILE 2
(s0s) (s0s)
MERCURY
FILE 1 PHASE N CILE 1
MXRASE FOR MXRASE FOR
JOB 1= 508 BI JOB 2= 505 B3

MERCURY
PHASE 2

MERCURY
PHASE 1

SELF
LOADER

MC 63-4

MERCURY ABSOLUTE SELF-
LOADING SYSTEM TAPE

FIGURE 4-3. MXSTW1 PROGRAM FLOW CHART (Sheet 9 of 9)

4-27

7]

—
A
@]
[=2]
95
i
1Y

4.3 MERCURY SYSTEM TAPE LOADER (MXLOAD)

MXLOAD occupies the first file of the self-loading Mercury operational
system tape (Al) and loads into core the programs and tables needed by the
system for launch data processing,

The flow chart for MXLOAD is shown in Figure 4-4.

4.3.1 Input Requirements

a)

b)

¢)

d)

MXLOAD as the first file on A1 and, if used, auxiliary tapes B8 and C6.

The Mercury system program files, which are error-corrected with
hamming codes and contain:

1)

2)

The file number in the address and the record count in the dec-
rement of the first data word in the first record of each file

A specially formatted information record in the second record of
each file. This record contains information for loading, table
processing, and coring. The format for this record is given in
the write-up for MYRSYS (see MC 63-2)

The TMDEFN table, an error-corrected file immediately following the
last program file.

Two preset tables referenced by MXLOAD:

1)

2)

TMHBUF —origined within the " common" area. TMHBUF entries
have the format

PZE D,E,F

where D is the length of a buffered routine, E is the number of
routines in the buffer block to be reserved in B unit, and F is the
block number for this block reserved in B

TMBF00—set at the end of COMMON in JOB 2 and origined into
the TMBFO00 buffer. The first two words of each 3-word subset
are preset:

First word—PZE E,1 » TMBFXX+E

Second word—PZE A length, , A ORG

Third word—PZE 0

4-29

MC 63-4

First word: P is negative the first time the buffer is used
D = E, the number of entries in TMBFXX
T must be 1
A = location of TMBFXX+E

The second word defines the A buffer. The third word defines the
B buffer.

4.3.2 Output Requirements

When MXLOAD has been executed, the programs of the Mercury Real-Time
Programming System, which are needed initially, are set for initial conditions
and stored in memory.

The following tables, which are either completely built by MXLOAD or
partially preset and built by MXLOAD, will be in memory. Only the entries
which concern MXLOAD are given below:

a) TMCORE-—contains a 3-word subset for every file on the absolute
system tape:

1) First word—MZE indicates that the file is in A bank of core; PZE
indicates that the file is not in A bank. The decrement contains
the last location + 1 of the file, the tag contains the JOB number,
and the address contains the first location of the file

2) Second word—a 6-character BCD

3) Third word—address contains the B origin of the block for the
buffered routines

b) TMQKY2—address is set with the TMCORE entry for the routine.

c) TMREFR—prefix is set minus. The decrement is set with the file
number for all routines except buffered routines which are in core.
The decrements for these routines are set with the buffer number.

d) TMBFO00—the third word in each subset is set. The decrement con-
tains the B buffer length and the address contains the B origin of the
buffer.

4-30

MC 63-4

e) TMBFXX—contains a 3-word subset for every buffered routine. The
first word of every subset is set by MXLOAD. The address has the
routine number and the decrement contains the routine length. The
prefix contains the location of the routine.

1) I P is negative, the routine is in A core.
If bits 1,2 = 01, the routine was last at the lower part of B block.
If bits 1,2 = 10, the routine was last at the upper part of B block.

2) K P is positive, the routine is in B core. Bits 1,2 have the same
significance as above. If bits 1,2 are blank, the routine is on tape.

When all the programs and conditions have been set, MXLOAD transfers
control to the real-time program through MOINIT,

4.3.3 Method

When LOAD TAPE is pressed, a 3-word sequence bootstraps MXLOAD
into memory and transfers control to MXLOAD.

MXLOAD reads the first five files into memory and passes control to
MKTBL, a subroutine which extracts and processes information from TMHBUF
for entries to the internal loader tables and TMBF00. MKTBL makes the
following entries in the indicated tables:

a) BLOKl—address contains the origin of the block, tag contains the
number of routines in the file.

b) BORGN-—address contains the origin of the block.

c) TABLE—address contains the block length, tag contains number of
routines in the block, decrement contains the block number.

d) TMBFO00—the third entry of a subset contains the block length in the
decrement and the block origin in the address.

MKTBL then returns control to MXLOAD. MXLOAD continues to read the
program files by transferring to the MSLOAD subroutine with the requested file
number in the calling sequence. MSLOAD reads and decodes the first record,
then tests this information to see if it is the last program file. If it is not the
last program file, MSLOAD tests for the requested file and positions the tape
to the correct file. Information taken from this record is used to read in the
proper number of records from this file.

4-31

MC 63-4

The second record—the information record—is read in and decoded by the
HOME 1 subroutine. Information is extracted from this record to make entries
in TMCORE, TMREFR, and TMQKY2. The information is then tested for one
of six possible ways to process the record.

The file is:

a) Loaded into A core.

b) Loaded into A core and buffered.

c¢) Loaded into B core and executed.

d) Loaded into a block in B core.

e) Left on tape to be loaded into A core.

f) Left on tape to be loaded into A core and buffered.

After all program files have been loaded, the TMDEFN f{ile is loaded and

control is transferred to MOINIT,

4.3.4 Usage

a) The Mercury absolute system tape is mounted on Al with the optional
tapes, if used, mounted on B8 and C6. The machine should be in the
65K storage and multiple-tag modes. The ECC and ICC are set for
execution and to reference A core.

b) When LOAD TAPE is pressed, MXLOAD is bootstrapped in and control
is transferred to MXLOAD. After MXLOAD has been executed, con-
trol is transferred to MOINIT. MXLOAD origins at location 1008;
the last location is approximately 23528.

c) If a redundancy occurs, an on-line message will state the two options:

1) If sense key 4 is down, the tape will back up one record and try
to reload when START is pressed

2) If sense key 4 is up, the remaining program files will be loaded
from the optional tapes, B8 and/or C6, when START is pressed.

4-32

MSLOAD

SAVE INDEX
REGISTERS AND
SET UP RETURN

}

STORE FiLNO IN
ADDR OF FILER

{

TURN OFF ANY
REDUNDANCY
CONDITION

!

TEST READY STATUS
OF MXSYSB AND
MXSYSC. IF READY
SET BREDY FOR
MXSYSB, CREDY FOR

_MKS{!L

STORE IN NUSCP
THE NO. OF TAPES
TO BE SPACED

RE-ORDER THE
TABLE OF COM-

BESIDES Al MANDS BY
STORING CHAN C
YES YES COMMANDS OVER
(S NUSCP = 2 IS MXSYSe ™ CHAN B
NO NO |
READS INTO RST
BLOCK BEGIN- | _ _ RD RECORD, PUT
NING WITH [0 ADDR OF LAST
BUFF WORD IN IR2
REWIND TAPE(S)
IS ADDR OF LAST YES _ | ANDSPACE PAST
WORD > BUFF + 6 FIRST FILE ON
. TAPE(S)
READS INTO
RD RECORD AND PUTy— _— —J BLOCK BEGIN-
ADDR OF LAST WORD NING WITH
READS INTO RST IN 1R2 BUfF
BLOCK BEGIN- RD RECORD AND PUT
NING WITH ™ — — "\ ADDR OF LAST WORD
BUFF IN IR2 IS ADDR OF LAST YES

WORD< BUFF + 5 t@
OR>BUFF +6 /

NO

FIGURE 4.4. MXLOAD PROGRAM FLOW CHART (Sheet 1 of 14)

4-33

MC 63-4

o

Q
CWORD <

1S THIS LAST
FILE CONTROL
WORD

MSWRECC,
TO REMOVE
HAMMING CODES

PUT BUFF + 1
INTO AC

T

IS THIS THE NO
DESIRED FILE NO.

HOME ‘ YES
C(BUFF)+ IR 1
\
RST READS INTO
RD RECORD AND ——__| BrLockBEGIN
PUT ADDR OF LAST NING WITH
WORD IN IR 2 BUFF
ARE THERE EXACTLY \ NO
264 WORDS IN RECORD
YES
MSRECC ERROR
TO REMOVE

I

HAMMING CODES

-©
PUT

TRANSFER INPUT
TO REQUIRED
LOCATIONS

1

. C YES TEST REDUNDANCY

LAST RECORD AND SET UP ERROR
RETURN, IF ON

NO

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 2 of 14)

4-34

e
@]
[=2)
P
W

@ SPF

IS THE DESIRED NO SPACE AHEAD

‘ >-—- THE DESIRED
FIL 0. BEHIND

EN EHIN NO. OF FILES

YES
|
BACKSPACE THE
REQUIRED NO.
OF FILES
Y
RST
READS INTO
BLOCK BEGINNING |————=— RD RECORD AND
WITH BURE PUT ADDR OF LAST
WORD IN IR 2
|
YES IS ADDR OF LAST
WORD > BUFF
NO
TESTC i
RST
READS INTO RD RECORD AND
BLOCK BEGINNING |————— PUT ADDR OF LAST
WITH BUFF WORD IN IR 2

Y

MSRECC,
TO REMOVE
HAMMING CODES
:: NO <

\

IS THIS THE
DESIRED FILE NO.

L -

YES

FIGURE 4.4. MXLOAD PROGRAM FLOW CHART (Sheet 3 of 14)

4-35

MC 63-4

YES

STORE PROPER
1/D COMMAND
IN RCHA + 1
SO MXSYSB
WILL NOT LOAD

BACKSPACE
1 RECORD
ON MXSYSC

ERROR
IS MXSYSB NOW NO IS MXSYSB IN
LOADING READY STATUS
YES NO
CSTRT
IS MXSYSC NOW NO
LOADING NUSCP = 2
YES YES
HALT ‘
(77717g) STORE PROPER
/D COMMAND
AT RCHA + 1 AND
RCHA + 2 SO
MXSYSC CAN
NOW LOAD

HLOAD

SUBTRACT ONE
FROM NUSCP

FIGURE 4.4. MXLOAD PROGRAM FLOW CHART (Sheet 4 of 14)

4-36

1S SWITCH
CLOSED (TXL)

YES
HOME1

OPEN SWITCH

(CHANGE TXL
TO TXM

PICK UP FILE
NO. FOR THIS
FILE

GET COMPLEMENT
OF TMCORE ENTRY
FOR THIS FILE IN IR 4

SAVE IR 4
INLOC NET
(USED LATER)

!

NO. OF
RECORDS
IN FILE

PLACE ROUTINE
INFORMATION
IN CORE TABLE

!

SAVE C(BUFF + 3)
MODIFIED BY
IR 4 IN LOCATION
MARK + 1 AND HOME4

GET NO. OF
ROUTINES IN THIS
FILE FROM PREFIX

AND TAG OF BUFF + 3

NO

BUFFL

SET UP ADDR
AT GET AND PUT

HOME2

PUT FILE NO.

IN DECR. OF

TMREFR FOR

EACH ROUTINE

PUT TMCORE LOC.
FOR FILE INTO EACH
TMQKY2 ENTRY
FOR EACH ROUTINE

HOME3

HAVE WE IMAN=E
FOR ALL ROUTINES
IN FILE

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 5 of 14)

NO

4-37

MC 63-4

CKFRB

INITIAL FILES
LOADED

YES

NO

KI/

PUT C(HOME3) IN
IR1T AND DECR.
OF LOC. MARK

LOAD INTO BUNIT

C

DOLDA

NO

LOAD THIS FILE

YES

‘ BUFFERED FILE

YES

SKPAB

YES

N

N

T T

PUT ADDR OF
NSK!{P IN ADDR OF
LOC THINK

PUT BUFF +4, 1 INBUFF
+1 (IR1 = NO. OF ROU-
TINES IN FILE)

SET LOCATION
HONTP NONZERO

GO TO
UPDAT
1C

HOME4

PUT RECORD COUNT
INTO IR1 AND
CONTINUE TO LOAD

PUT BUFF +4, 1 IN BUFF
+1 (IR1 = NO. OF ROU-
TINES IN FILE)

GO TO
PUT +2
1A

GO TO
UPDAT

HPASS

PUT ADDR OF NSKIP
INTO LOC THINK

SET LOCATIONS
HONTB AND NOTAB
NONZERO

SET LOCATION
LOUNA TO NONZERO

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 6 of 14)

4-38

MC 63-4

1

Froat 70 ZERO AND PUT
PUT ORG OF
FILE IN ADDR TEMP + 4 IN C(AQC)
OF TEMP + 2
()
DECR STONO |
OF TEMP + 4 PUT LENGTH OF :'_-;';;;_-‘I
Fi G
NSKIP LE (ROUTING) IN |1 A I
SPECIFIC TMBF00 1
SPACE ALL SYSTEM LOCATION | SPECIFIC TMBF00
TAPES PAST THIS FILE e = - —
WITHOUT LOADING
THIS FIL o SET SIGN
LOADED IN OF SPECIFIC
PUT BLOCK AUNIT TMBFOO0 MINUS
NUMBER IN 1R2 SET LOCATIONS NO
LOUNA, NOTAB, |
HONTP TO ZERO
‘ STORE INTO
FIND SPECIFIC SPECIFIC
TMBFQ0 FOR TMBF00 LOC
THIS BLOCK
SET SIGN
TOTEIESLFOHREED OF SPECIFIC
N B TMBF00 MINUS
YES T :

STORE SPECIFIC
TMBF00 BACK
IN TMBFO0

STORE ADDR
OF THIS TMBFOQO
INTO LOC STOLG

AND STONO

1

FIND THE FIRST
SPECIFIC TMBFXX
TABLE WHICH HAS

NOT BEEN USED

1

PICK UP TMCORE
ENTRY FOR THIS
FILE AND PUT
IN LOC TEMP + 9

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Skeet 7 of 14)

4-39

MC 63-4

PUT ROUTINE
NUMBER IN AC

foe e — — —

ROUTINE NUMBERS
START AT
BUFF + 3

FILE BUFFED
IN B UNIT

)N_O_

YES

TOLG \

STORE ROUTINE
NUMBER IN SPECIFIC
TMBFXX ENTRY

INCREMENT
IR1 AND IR2
BY MINUS ONE

PUT COMPLEMENT
OF ROUTINE
NUMBER IN IR4

1

STORE BLOCK NUMBER
IN DECREMENT

ROUTINE LEFT NO °FTSPEC'F'C
ON TAPE MREFR
YES |
NO ROUTINE LOADED
‘ IN A UNIT

YES

TURN OFF R BIT
IN TMREFR FOR
THIS ROUTINE

SETRF

PUT SPECIFIC
TMREFR ENTRY
INTO AC

)

FILE LOADED IN NO
B UNIT

YES

SET SIGN OF
TMREFR
ENTRY MINUS

STORE SPECIFIC
TMREFR ENTRY
BACK IN ITSELT

PUT ADDRESS OF
TMCORE ENTRY FOR
THIS FILE IN ADDRESS
OF TMQKY2

FILE BEING LEFT
ON TAPE

YES

PUT A ONE IN
PREFIX OF
SPECIFIC TMREFR
ENTRY

23C

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 8 of 14)

4-40

LOC THINK
INSTRUCTION
WiLL BE TRAN

SKIP IF SPACED

MARK

(ALL ROUTINE \No
N

UMBERS HANDLEDJ

{ YES

PUT IN IR1 THE

RECORD COUNT

REMAINING FOR
THIS FILE

PUT SPECIFIC
TMCORE ENTRY
IN AC

!

22C

FILE LOADED IN \ NO
A UNIT y,

‘ YES

SET TMCORE
ENTRY MINUS

|

L

RESTORE TMCORE
ENTRY

i

FILELEFTON "\ NO
TAPE)
y YEs

PUT A ONE IN
PREFIX OF
TMCORE ENTRY

THINK

(sPace THIS FILE)res
J
y NO

21D

(LOADINTOBUNIT }YES
J
‘ NO

RESET LOC
NOTAB, HONTP,

LOUNA TO ZERO

O

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Skeet 9 of 14)

4-41

MC 63-4

PRINT:
ERROR FROM
MSRECC PRESS
START TO
CONTINUE

HALT

MLODB

PUT BUFF+ 1IN
LOC TEMP
BUFF + 1 = PZE A, B, Q

PUT MINUS BLOCK
NUMBER IN {R2
AND PUT SPECIFIC
BLOK1IN AC

1

A = LENGTH OF FILE

B = NO. OF ROUTINES
IN BLOCK

C = BLOCK NUMBER

UNTB3

NO PUT LENGTH NEED FOR
TWO ROUTINES IN THIS BLOCK | THIS BLOCK IN AC
(GET FROM TABLE)

BHOME

ES

RST
READ A RECORD

RECORD = 264 WORDS)

1

SUBTRACT TEMP
(CONTAINS LENGTH
OF FILE) FROM AC

1

STORE IN SPECIFIC
BLOCK THE ORG FOR

NO LE IN
<o 10 THIS FILE IN B
RATZ (]

YES ‘
MPUT [|
PUT WORD COUNT STORE WORDS
IN IR4 AND AC IN B UNIT

BLOK1 CONTAINS
B8 UNIT ORG
FOR BLOCK

(DECREMENT OF BUFF)

!

SET UP LOC
MGET WITH A
UNIT ADDRESS TO
GET WORDS

!

ADD SPECIFIC BLOK]1

TO WORD COUNT OF

RECORD AND STORE
IN MPUT

MGET {

PICK UP WORDS
READ FROM TAPE
INTO A UNIT

1

EXECUTE SEB

|

AREA RESERVED

!

EXECUTE SEA

1

‘ ARE ALL RECORDS LOADE

D)_r;g.

* YES

ADD ONE TO THE
DECREMENT OF
SPECIFIC BLOKI1

(=)

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 10 of 14)

4-42

MC 63-4

~

THIS FILE \ NO GO TO
BUFFERED WITH /

-+ PUT+3
TWO OTHER FILES
YES

i
THIS FILE NO PUT A TWO
LOADED AT ORG IN SPECIFIC -
OF BLOCK RESERVED TMBFXX ENTRY
YES
Y
PUT A ONE IN

PREFIX OF SPECIFIC

TMBFXX ENTRY

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 11 of 14)

. 4-43

MC 63-4

MKTBL
PUT MINUS ONE IN MCLODB EQU
IR2, PUT MCLODB | = — = — NUMBER OF B UNIT
IN IR1 BUFFERED ROUTINES
SAVE VALUE
OF MCLODB
IN NOETY
EXAM

PUT TMHBUF+N

IN AC
TMHBUF = PZE A, B, C

N =0 - MCLODB-1

SHIFT POS 18- 20
IN ACRT. 15
T0 POS, 33-35

STO C(AC)

IN BLENG
C(AC) = NUMBER OF
ROUTINES IN BLOCK

YE
(BLENG = 3 @

NO _———i

PUT TMHBUF +N STORE ADDRESS OF AC IN
IN AC AND CORRECT TABLE ENTRY
TMHBUF+ N+ 1 (SPECIFIED BY IR2)
+ N+ STORE TAG AND DECREMENT
IN MQ IN CORRECT TABLE

!
C AC > MQ

ADD SPECIFIC
BLOK1 LOC FOR
EACH BLOCK OF

YES

‘ NO ROUTINES
PUT C(AC) IN i EACH BLOK1LOC
o o SO tToRe a0 b eReen
BLOK1 FOR NEXT ~ j=—— == OF ROUTINES IN ADDRESS
BLOCK OF ROUTINES AND BLOCK NUMBER
IN DECREMENT

STORE C(AC) IN

LOC LARGE
NOW C(LARGE) = @

LARGEST ROUTINE

1

FIGURE 4.4, MXLOAD PROGRAM FLOW CHART (Sheet 12 of 14)

4-44 ‘

PUT TAHBUF+N IN
AC AND TAHBUF+N+1
IN MQ
0 = N < MCLODB

YES 1S C(AC) > C(MQ))
NO ‘

EXCHANGE
C(MQ) WITH
C(AC)

STORE C(MQ)
IN LOC SMALL

ADD TMHBUF+N
TO TMHBUF+N+1
AND TMHBUF+N+2,
STORE IN TOTAL

AC NOW HAS
SUM OF THE
LARGEST TWO
ROUTINES

SUB C(SMALL)
FROM C(TOTAL)

!

EACH TABLE LOC
CONTAINS BLOCK LENGTH
NEEDED, BLOCK NUMBER,

AND NUMBER IN
BLOCK

STORE CONTENT
AC IN CORRECT
TABLE LOCATION

1

SETS UP
ORIGIN
FOR NEXT
BLOK1! LOC

ADD BLOK1 LOC
CORRESPONDING TO
TABLE AND STORE IN

NEXT BLOK1 LOC

MC 63-4

CKOUT \
PUT C(BLENG) IN
IR4 AND

INCREMENT IR1
BY MINUS ONE

SUBTRACT ONE
FROM LOCATION
NOETY

RETURN
TO LOAD
REME\)INDER

F
FILES

ALL BLOCKSIN
B UNIT HELD
C(AC) =0

FINISHED

NO
WiTH THIS BLOCK

YES ‘

INCREMENT IR2
BY MINUS ONE
AND EXAMINE
NEXT BLOCK

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 13 of 14)

GO TO
EXAM

4-45

MC 63-4

MXLOAD

RUSTY

PRINT MESSAGE:

PROGRAM IS IN B
(ICC INDICATOR OFF UNIT, TURN 65K ON, HALT
NANCY RELOAD PROGRAM
& YES (SETTING: 32K-B)
PRINT MESSAGE:
TURN 65K
SWITCH ON ECCON
(SETTING: 32K-B)
YES
EXECUTE
llSEAI'
HALT RLOAD
REDUNDANCY LIGHT YYES, ’;ELOAD g'Ri]T
FOR A ON LE FROM
NO J
READM
PUT FFIL INIR2
(FFIL = FIRST FILE TO
LOAD)
MSLOAD
TOLOAD FILE
STORE C(IR2) IN * THIS 1S A PER-
CALLING SEQUENCE NCREMENT 1R2 BY PETUAL LOOP ONLY
TO MSLOAD ONE AND STORE C(IR2) BY NOT RETURNING
IN CALL SEQUENCE - FROM MSLOAD
TO MSLOAD DOES ONE GET
H OUT OF LOOP
MSLOAD 1
TO LOAD NORMAL RETURN | |
THIS FILE FROM MSLOAD
INCREMENT RETURN
IR2 - FROM
BY A ONE MSLOAD
ST (RE C(IR2)
IN REAM+ 3
AND CONLO + 1
ALL INITIAL

4-46

i{

FILES LOADED

FIGURE 4.4, MXLOAD PROGRAM FLOW CHART (Sheet 14 of 14)

MC 63-4

4.4 EXTENDED DEFINITION OF SYMBOLS PROCESSOR (MXDEFN)
MXDEFN automatically extends the definition of specified symbols among

"n'" separately compiled jobs during program execution. Thus, these symbol

definitions are made available for referencing from any and/or all jobs.

Ths flow chart for MXDEFN is shown in Figure 4-5.

4.4,1 Input Requirements

MXDEFN requires as input at least one QDEFN macro. The QDEFN macro
definition is as follows:

QDEFN MACRO ENTRY, ENO, XSYMB
TCD VCINT
BCI 1, ENTRY
FVE ENTRY, , XSYMB
XSYMB ORG TMDEFN + ENO - 1
END

where the parameters are

ENTRY —the 6-letter symbolic name of a routine, processor, subroutine,
etc., that requires an extended definition.

ENO—the sequence number or count.

XSYMB—the symbolic address of the extended definition of ENTRY,
A system example in the use of the QDEFN macro is:

QDEFN MYHSOD, 1, XYHSOD

which expands into

TCD VCINT

BCI 1, MYHSOD

FVE MYHSOD, , XYHSOD
XYHSOD ORG TMDEFN

4-47

MC 63-4

4.4.2 Output Requirements

Output from MXDEFN consists of an extended definition table and several
diagnostic messages.

a) TMDEFN—a table of extended definitions of the form TRA ENTRY.
One core location for each QDEFN macro is reserved automatically.

b) Diagnostic Messages

1) QDEFN ENTRIES, NONDEFINED—each ENTRY of the QDEFN
macros that is not defined in either ''n'* compiled jobs is listed
following this heading.

2) QDEFN ENTRIES, MULTIDEFINED—each ENTRY of the QDEFN
macro that is defined in two or more jobs is listed following this
heading.

3) REPOSITION QDEFN ENTRIES SO THAT LAST QDEFN MACRO
HAS GREATEST NUMERICAL ENO. DO NOT CONTINUE., I
the last QDEFN macro does not have the greatest numerical ENO
and if ENTRY of the QDEFN macro with the greatest numerical
ENO is defined in either job, the extended definition for ENTRY
is not determined and the message above is printed.

4) UNDEFINED SYMBOLS BETWEEN, AND INCLUDING, THE
FOLLOWING TWO SYMBOLS ARE QDEFN ENTRIES. The first
and last symbol processed by MXDEFN that appear in the diagnostic
undefined listing of SOS are printed following this heading for each
of "n' jobs. All QDEFN diagnostic messages are printed on-line
and written on output tape A2 for off-line printing.

5) MXDEFN OVERLAPS TMDEFN TABLE. RELOCATE TMDEFN
TABLE TO HIGHER CORE LOCATION, DO NOT CONTINUE.
This heading is printed whenever overlapping occurs. Overlapping
results because the TMDEFN table is located within a file that
overlaps MXDEFN,

4.4.3 Method
The logic of extended definitions takes advantage of the method employed
by SOS in assigning absolute values to undefined symbols within a job at compile

time.

The address of the last word in a file plus one, or more precisely, the
value of the location counter at the end of a file is assigned to the first undefined

MC 63-4

symbol encountered within that file. This value is continuously incremented
by one and assigned to each subsequent undefined symbol within the file.

By strategically placing ENTRY, ORG, TCD (TCD creates a file) in this
order (see input requirements) the absolute value assigned to undefined symbols
may be predetermined and controlled. Utilizing this logic SOS is forced to
assign each undefined ENTRY of the QDEFN macro to a unique address with-
in TMDEFN. A comparison routine, MXDEFN, processes all requested
QDEFN ENTRIES per job, and their correct definitions, when found, are stored
in their unique locations in TMDEFN.

The requested symbols for extended definitions normally are addresses of
unconditional transfers. TMDEFN, which is saved and restored throughout the
processing of "'n" jobs, becomes a table of extended definitions during execu-
tion time of system runs.

4.4.4 Usage

Entry to MXDEFN is via the address, VCTSX, of the first TCD card in the
system. Subsequent entries are to VCINT (the initialization section of MXDEFN)
after reading each QDEFN record from SOS erase tapes. Exit is to MXSTW1,
the system writer.

In addition to processing ENTRY symbols, MXDEFN determines the job of
a multiple job system and rewinds ABS system tape A 6 if Job 1 is being
processed.

a) Storage Required—268 locations.
b) MXDEFN Uses:
1) Macro—QDEFN
2) Subroutines:
External—SOS READ FILE, PRINT, and MSRECC
Internal—VCWTD
3) Parameters—ENTRY, ENO, XSYMBL, and MNDEFN
4) Communication Cell—-JBIND
5) Constant—VCTWO

6) Absolute Locations—loc 2, loc 3000 loc 3001

10’ 10
7) Tables:
External—-TMDEFN
Internal—VCDFN
8) Mask—VCTRA
9) Internal Cells—VCRNT, VCFRT, and VCLST

4-49

MC 63-4

c) Time Required (app